High Resolution Separation and Analysis of Biological Macromolecules


Book Description

The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. More than 260 volumes have been published (all of them still in print) and much of the material is relevant even today--truly an essential publication for researchers in all fields of life sciences. Key Features * Liquid chromatography * Electrophoresis * Mass spectrometry.




High Resolution Separation and Analysis of Biological Macromolecules, Part B: Applications


Book Description

The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. More than 260 volumes have been published (all of them still in print) and much of the material is relevant even today--truly an essential publication for researchers in all fields of life sciences. Liquid chromatography Electrophoresis Mass spectrometry




Biothermodynamics


Book Description

In the last several years there has been an explosion in the ability of biologists, molecular biologists and biochemists to collect vast amounts of data on their systems. This volume presents sophisticated methods for estimating the thermodynamic parameters of specific protein-protein, protein-DNA and small molecule interactions.




DNA Microarrays, Part B: Databases and Statistics


Book Description

Modern DNA microarray technologies have evolved over the past 25 years to the point where it is now possible to take many million measurements from a single experiment. These two volumes, Parts A & B in the Methods in Enzymology series provide methods that will shepard any molecular biologist through the process of planning, performing, and publishing microarray results. Part A starts with an overview of a number of microarray platforms, both commercial and academically produced and includes wet bench protocols for performing traditional expression analysis and derivative techniques such as detection of transcription factor occupancy and chromatin status. Wet-bench protocols and troubleshooting techniques continue into Part B. These techniques are well rooted in traditional molecular biology and while they require traditional care, a researcher that can reproducibly generate beautiful Northern or Southern blots should have no difficulty generating beautiful array hybridizations. Data management is a more recent problem for most biologists. The bulk of Part B provides a range of techniques for data handling. This includes critical issues, from normalization within and between arrays, to uploading your results to the public repositories for array data, and how to integrate data from multiple sources. There are chapters in Part B for both the debutant and the expert bioinformatician. - Provides an overview of platforms - Includes experimental design and wet bench protocols - Presents statistical and data analysis methods, array databases, data visualization and meta analysis




Natural Product Biosynthesis by Microorganisms and Plants Part B


Book Description

This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. The second of 3 volumes covering Natural product biosynthesis by microorganisms and plants. - This new volume continues the legacy of this premier serial - Contains quality chapters authored by leaders in the field - The second of 3 volumes it has chapters on such topics as biological chlorination, bromination and iodination, and phylogenetic approaches to natural product structure prediction




Guide to Yeast Genetics and Molecular Biology


Book Description

Guide to Yeast Genetics and Molecular Biology presents, for the first time, a comprehensive compilation of the protocols and procedures that have made Saccharomyces cerevisiae such a facile system for all researchers in molecular and cell biology. Whether you are an established yeast biologist or a newcomer to the field, this volume contains all the up-to-date methods you will need to study "Your Favorite Gene" in yeast.Key Features* Basic Methods in Yeast Genetics* Physical and genetic mapping* Making and recovering mutants* Cloning and Recombinant DNA Methods* High-efficiency transformation* Preparation of yeast artificial chromosome vectors* Basic Methods of Cell Biology* Immunomicroscopy* Protein targeting assays* Biochemistry of Gene Expression* Vectors for regulated expression* Isolation of labeled and unlabeled DNA, RNA, and protein




RNA Turnover in Eukaryotes: Nucleases, Pathways and Analysis of mRNA Decay


Book Description

Specific complexes of protein and RNA carry out many essential biological functions, including RNA processing, RNA turnover, RNA folding, as well as the translation of genetic information from mRNA into protein sequences. Messenger RNA (mRNA) decay is now emerging as an important control point and a major contributor to gene expression. Continuing identification of the protein factors and cofactors, and mRNA instability elements responsible for mRNA decay allow researchers to build a comprehensive picture of the highly orchestrated processes involved in mRNA decay and its regulation. - Covers the nonsense-mediated mRNA decay (NMD) or mRNA surveillance pathway - Expert researchers introduce the most advanced technologies and techniques to identify mRNA processing, transport, localization and turnover, which are central to the process of gene expression - Offers step-by-step lab instructions, including necessary equipment and reagents




Oxygen Biology and Hypoxia


Book Description

For over fifty years the Methods in Enzymology series has been the critically acclaimed laboratory standard and one of the most respected publications in the field of biochemistry. The highly relevant material makes it an essential publication for researchers in all fields of life and related sciences. This volume features articles on the topic of oxygen biology and hypoxia.




Single Molecule Tools, Part A: Fluorescence Based Approaches


Book Description

Single molecule tools have begun to revolutionize the molecular sciences, from biophysics to chemistry to cell biology. They hold the promise to be able to directly observe previously unseen molecular heterogeneities, quantitatively dissect complex reaction kinetics, ultimately miniaturize enzyme assays, image components of spatially distributed samples, probe the mechanical properties of single molecules in their native environment, and "just look at the thing" as anticipated by the visionary Richard Feynman already half a century ago. Single Molecule Tools, Part A: Fluorescence Based Approaches captures a snapshot of this vibrant, rapidly expanding field, presenting articles from pioneers in the field intended to guide both the newcomer and the expert through the intricacies of getting single molecule tools. - Includes time-tested core methods and new innovations applicable to any researcher employing single molecule tools - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide to developing protocols in a number of disciplines




Measuring Biological Responses with Automated Microscopy


Book Description

The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today-truly an essential publication for researchers in all fields of life sciences.