High Speed A/D Converters


Book Description

The Analog to Digital Converters represent one half of the link between the world we live in - analog - and the digital world of computers, which can handle the computations required in digital signal processing. These devices are mathematically very complex due to their nonlinear behavior and thus fairly difficult to analyze without the use of simulation tools. High Speed A/D Converters: Understanding Data Converters Through SPICE presents the subject from the practising engineer's point of view rather than from the academic's point of view. A practical approach is emphasized. High Speed A/D Converters: Understanding Data Converters Through SPICE is intended as a learning tool by providing building blocks that can be stacked on top of each other to build higher order systems. The book provides a guide to understanding the various topologies used in A/D converters by suggesting simple methods for the blocks used in an A/D converter. The converters discussed throughout the book constitute a class of devices called undersampled or Nyquist converters. The tools used in deriving the results presented are: TopSpice® by Penzar - a mixed mode SPICE simulator - version 5.90. The files included in Appendix A were written for this tool. However, most circuit files need only minor adjustments to be used on other SPICE simulators such as PSpice, Hspice, IS_Spice and Micro-Cap IV; Mathcad 2000 - Professional by Mathsoft. This tool is very useful in performing FFT analysis as well as drawing some of the graphs. Again, the mathcad files are included to help the user analyze the data. High Speed A/D Converters: Understanding Data Converters Through SPICE not only supplies the models for the A/D converters for SPICE program but also describes the physical reasons for the converter's performance.




High Speed Data Converters


Book Description

High Speed Data Converters covers high speed data converters from the perspective of a leading high speed ADC designer and architect, with a strong emphasis on high speed Nyquist A/D converters. For our purposes, the term "high speed" is defined as sampling rates that are greater than 10 MS/s. The book is intended for engineers and students who design, evaluate or use high speed data converters. A basic foundation in circuits, devices and signal processing is required. The book is meant to bridge the gap between analysis and design, theory and practice, circuits and systems. It covers basic analog circuits and digital signal processing algorithms. There is a healthy dose of theoretical analysis in this book, combined with the practical issues and intuitive perspectives. Topics covered include: * Introduction to high-speed data conversion * Performance Metrics * Data Converter Architectures * Sampling * Comparators * Amplifiers * Pipelined A/D Converters * Time-interleaved Converters * Digitally Assisted Converters * Evolution and Trends




High-Speed Analog-to-Digital Conversion


Book Description

This book covers the theory and applications of high-speed analog-to-digital conversion. An analog-to-digital converter takes real-world inputs (such as visual images, temperature readings, and rates of speed) and transforms them into digital form for processing by computer. This book discusses the design and uses of such circuits, with particular emphasis on improving the speed of the conversion process and the accuracy of its output--how well the output is a corresponding digital representation of the output*b1input signal. As computers become increasingly interfaced to the outside world, "ADC" techniques will become ever more important.




Integrated Analog-To-Digital and Digital-To-Analog Converters


Book Description

Analog-to-digital (A/D) and digital-to-analog (D/A) converters provide the link between the analog world of transducers and the digital world of signal processing, computing and other digital data collection or data processing systems. Several types of converters have been designed, each using the best available technology at a given time for a given application. For example, high-performance bipolar and MOS technologies have resulted in the design of high-resolution or high-speed converters with applications in digital audio and video systems. In addition, high-speed bipolar technologies enable conversion speeds to reach the gigaHertz range and thus have applications in HDTV and digital oscilloscopes. Integrated Analog-to-Digital and Digital-to-Analog Converters describes in depth the theory behind and the practical design of these circuits. It describes the different techniques to improve the accuracy in high-resolution A/D and D/A converters and also special techniques to reduce the number of elements in high-speed A/D converters by repetitive use of comparators. Integrated Analog-to-Digital and Digital-to-Analog Converters is the most comprehensive book available on the subject. Starting from the basic elements of theory necessary for a complete understanding of the design of A/D and D/A converters, this book describes the design of high-speed A/D converters, high-accuracy D/A and A/D converters, sample-and-hold amplifiers, voltage and current reference sources, noise-shaping coding and sigma-delta converters. Integrated Analog-to-Digital and Digital-to-Analog Converters contains a comprehensive bibliography and index and also includes a complete set of problems. This book is ideal for use in an advanced course on the subject and is an essential reference for researchers and practicing engineers.




Design of Multi-Bit Delta-Sigma A/D Converters


Book Description

This book discusses both architecture and circuit design aspects of Delta-Sigma A/D converters, with a special focus on multi-bit implementations. The emphasis is on high-speed high-resolution converters in CMOS for ADSL applications, although the material can also be applied for other specification goals and technologies.




High-Resolution and High-Speed Integrated CMOS AD Converters for Low-Power Applications


Book Description

This book is a step-by-step tutorial on how to design a low-power, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) integrated CMOS analog-to-digital (AD) converter, to respond to the challenge from the rapid growth of IoT. The discussion includes design techniques on both the system level and the circuit block level. In the architecture level, the power-efficient pipelined AD converter, the hybrid AD converter and the time-interleaved AD converter are described. In the circuit block level, the reference voltage buffer, the opamp, the comparator, and the calibration are presented. Readers designing low-power and high-performance AD converters won’t want to miss this invaluable reference. Provides an in-depth introduction to the newest design techniques for the power-efficient, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) AD converter; Presents three types of power-efficient architectures of the high-resolution and high-speed AD converter; Discusses the relevant circuit blocks (i.e., the reference voltage buffer, the opamp, and the comparator) in two aspects, relaxing the requirements and improving the performance.




Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion


Book Description

Among analog-to-digital converters, the delta-sigma modulator has cornered the market on high to very high resolution converters at moderate speeds, with typical applications such as digital audio and instrumentation. Interest has recently increased in delta-sigma circuits built with a continuous-time loop filter rather than the more common switched-capacitor approach. Continuous-time delta-sigma modulators offer less noisy virtual ground nodes at the input, inherent protection against signal aliasing, and the potential to use a physical rather than an electrical integrator in the first stage for novel applications like accelerometers and magnetic flux sensors. More significantly, they relax settling time restrictions so that modulator clock rates can be raised. This opens the possibility of wideband (1 MHz or more) converters, possibly for use in radio applications at an intermediate frequency so that one or more stages of mixing might be done in the digital domain. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits covers all aspects of continuous-time delta-sigma modulator design, with particular emphasis on design for high clock speeds. The authors explain the ideal design of such modulators in terms of the well-understood discrete-time modulator design problem and provide design examples in Matlab. They also cover commonly-encountered non-idealities in continuous-time modulators and how they degrade performance, plus a wealth of material on the main problems (feedback path delays, clock jitter, and quantizer metastability) in very high-speed designs and how to avoid them. They also give a concrete design procedure for a real high-speed circuit which illustrates the tradeoffs in the selection of key parameters. Detailed circuit diagrams, simulation results and test results for an integrated continuous-time 4 GHz band-pass modulator for A/D conversion of 1 GHz analog signals are also presented. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits concludes with some promising modulator architectures and a list of the challenges that remain in this exciting field.




High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing


Book Description

This book is based on the 18 tutorials presented during the 23rd workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, serving as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.




Data Conversion Handbook


Book Description

This comprehensive new handbook is a one-stop engineering reference covering data converter fundamentals, techniques, and applications. Beginning with the basic theoretical elements necessary for a complete understanding of data converters, the book covers all the latest advances made in this changing field. Details are provided on the design of high-speec ADCs, high accuracy DACs and ADCs, sample-and-hold amplifiers, voltage sources and current reference,noise-shaping coding, sigma-delta converters, and much more.




High-Speed Analog-to-Digital Conversion


Book Description

This book covers the theory and applications of high-speed analog-to-digital conversion. An analog-to-digital converter takes real-world inputs (such as visual images, temperature readings, and rates of speed) and transforms them into digital form for processing by computer. This book discusses the design and uses of such circuits, with particular emphasis on improving the speed of the conversion process and the accuracy of its output--how well the output is a corresponding digital representation of the output*b1input signal. As computers become increasingly interfaced to the outside world, "ADC" techniques will become ever more important.