High-speed Low-power Modular Arithmetic for Elliptic Curve Cryptosystems Based on the Residue Number System


Book Description

This thesis presents designs and hardware implementations of modular arithmetic for elliptic curve point multiplication (ECPM). The aim is to speed up elliptic curve cryptography (ECC) architectures and optimise their power consumption. Improvements are made in existing algorithms, and conventional number systems are replaced by residue number systems (RNS) to achieve a high speed for basic arithmetic operations. The proposed ECPM architectures are generic and can be scaled for different key sizes; the hardware implementations in this work are for 256-bit ECPM over prime field Fp.




Residue Number Systems


Book Description

This new and expanded monograph improves upon Mohan's earlier book, Residue Number Systems (Springer, 2002) with a state of the art treatment of the subject. Replete with detailed illustrations and helpful examples, this book covers a host of cutting edge topics such as the core function, the quotient function, new Chinese Remainder theorems, and large integer operations. It also features many significant applications to practical communication systems and cryptography such as FIR filters and elliptic curve cryptography. Starting with a comprehensive introduction to the basics and leading up to current research trends that are not yet widely distributed in other publications, this book will be of interest to both researchers and students alike.




Modular Multiplication in the Residue Number System


Book Description

Public-key cryptography is a mechanism for secret communication between parties who have never before exchanged a secret message. This thesis contributes arithmetic algorithms and hardware architectures for the modular multiplication Z = A x B mod M. This operation is the basis of many public-key cryptosystems including RSA and Elliptic Curve Cryptography. The Residue Number System (RNS) is used to speed up long word length modular multiplication because this number system performs certain long word length operations, such as multiplication and addition, much more efficiently than positional systems. A survey of current modular multiplication algorithms shows that most work in a positional number system, e.g. binary. A new classification is developed which classes these algorithms as Classical, Sum of Residues, Montgomery or Barrett. Each class of algorithm is analyzed in detail, new developments are described, and the improved algorithms are implemented and compared using FPGA hardware. Few modular multiplication algorithms for use in the RNS have been published. Most are concerned with short word lengths and are not applicable to public-key cryptosystems that require long word length operations. This thesis sets out the hypothesis that each of the four classes of modular multiplication algorithms possible in positional number systems can also be used for long word length modular multiplication in the RNS; moreover using the RNS in this way will lead to faster implementations than those which restrict themselves to positional number systems. This hypothesis is addressed by developing new Classical, Sum of Residues and Barrett algorithms for modular multiplication in the RNS. Existing Montgomery RNS algorithms are also discussed. The new Sum of Residues RNS algorithm results in a hardware implementation that is novel in many aspects: a highly parallel structure using short arithmetic operations within the RNS; fully scalable hardware; and the fastest ever FPGA implementation of the 1024-bit RSA cryptosystem at 0.4 ms per decryption.




Emerging Technology and Architecture for Big-data Analytics


Book Description

This book describes the current state of the art in big-data analytics, from a technology and hardware architecture perspective. The presentation is designed to be accessible to a broad audience, with general knowledge of hardware design and some interest in big-data analytics. Coverage includes emerging technology and devices for data-analytics, circuit design for data-analytics, and architecture and algorithms to support data-analytics. Readers will benefit from the realistic context used by the authors, which demonstrates what works, what doesn’t work, and what are the fundamental problems, solutions, upcoming challenges and opportunities. Provides a single-source reference to hardware architectures for big-data analytics; Covers various levels of big-data analytics hardware design abstraction and flow, from device, to circuits and systems; Demonstrates how non-volatile memory (NVM) based hardware platforms can be a viable solution to existing challenges in hardware architecture for big-data analytics.




Cryptography Arithmetic


Book Description

Modern cryptosystems, used in numerous applications that require secrecy or privacy - electronic mail, financial transactions, medical-record keeping, government affairs, social media etc. - are based on sophisticated mathematics and algorithms that in implementation involve much computer arithmetic. And for speed it is necessary that the arithmetic be realized at the hardware (chip) level. This book is an introduction to the implementation of cryptosystems at that level. The aforementioned arithmetic is mostly the arithmetic of finite fields, and the book is essentially one on the arithmetic of prime fields and binary fields in the context of cryptography. The book has three main parts. The first part is on generic algorithms and hardware architectures for the basic arithmetic operations: addition, subtraction, multiplication, and division. The second part is on the arithmetic of prime fields. And the third part is on the arithmetic of binary fields. The mathematical fundamentals necessary for the latter two parts are included, as are descriptions of various types of cryptosystems, to provide appropriate context. This book is intended for advanced-level students in Computer Science, Computer Engineering, and Electrical and Electronic Engineering. Practitioners too will find it useful, as will those with a general interest in "hard" applications of mathematics.




Energy-Efficient Modular Exponential Techniques for Public-Key Cryptography


Book Description

Cryptographic applications, such as RSA algorithm, ElGamal cryptography, elliptic curve cryptography, Rabin cryptosystem, Diffie -Hellmann key exchange algorithm, and the Digital Signature Standard, use modular exponentiation extensively. The performance of all these applications strongly depends on the efficient implementation of modular exponentiation and modular multiplication. Since 1984, when Montgomery first introduced a method to evaluate modular multiplications, many algorithmic modifications have been done for improving the efficiency of modular multiplication, but very less work has been done on the modular exponentiation to improve the efficiency. This research monograph addresses the question- how can the performance of modular exponentiation, which is the crucial operation of many public-key cryptographic techniques, be improved? The book focuses on Energy Efficient Modular Exponentiations for Cryptographic hardware. Spread across five chapters, this well-researched text focuses in detail on the Bit Forwarding Techniques and the corresponding hardware realizations. Readers will also discover advanced performance improvement techniques based on high radix multiplication and Cryptographic hardware based on multi-core architectures.




Recent Findings in Intelligent Computing Techniques


Book Description

This three volume book contains the Proceedings of 5th International Conference on Advanced Computing, Networking and Informatics (ICACNI 2017). The book focuses on the recent advancement of the broad areas of advanced computing, networking and informatics. It also includes novel approaches devised by researchers from across the globe. This book brings together academic scientists, professors, research scholars and students to share and disseminate information on knowledge and scientific research works related to computing, networking, and informatics to discuss the practical challenges encountered and the solutions adopted. The book also promotes translation of basic research into applied investigation and convert applied investigation into practice.




Constructive Side-Channel Analysis and Secure Design


Book Description

This book constitutes revised selected papers from the 13th International Workshop on Constructive Side-Channel Analysis and Secure Design, COSADE 2022, held in Leuven, Belgium, in April 2022. The 12 full papers presented in this volume were carefully reviewed and selected from 25 submissions. The papers cover the following subjects: implementation attacks, secure implementation, implementation attack-resilient architectures and schemes, secure design and evaluation, practical attacks, test platforms, and open benchmarks.




Elliptic Curves


Book Description

Elliptic curves have played an increasingly important role in number theory and related fields over the last several decades, most notably in areas such as cryptography, factorization, and the proof of Fermat's Last Theorem. However, most books on the subject assume a rather high level of mathematical sophistication, and few are truly accessible to