Mechanical Behaviour of Materials at High Temperature


Book Description

This volume contains the edited version of lectures and selected research contributions presented at the NATO ADVANCED STUDY INSTITUTE on MECHANICAL BEHA VI OUR OF MATERIALS AT HIGH TEMPERATURE, held in Sesimbra, Portugal, 12th-22nd September 1995, and organized by 1ST-Lisbon Institute of Technology, PortugaL The Institute was attended by 88 participants, including 15 lecturers from 17 countries including five CP countries. The lecturers were leading scientists and technologists from universities, research institutions and industry. The students were mainly young PhD students and junior academic or research staff with postgraduate qualifications (MSc or PhD). Fourteen students were from the five CP countries. The students presented research papers or posters during the Institute reporting the current progress of their research projects. A total of thirty three lectures, ten research papers and fifty posters were presented. This book does not contain the poster presentations and seven research papers were selected for publication. All the sessions were very active and quite extensive discussions on scientific aspects took place during the Institute. The Advanced Study Institute provided a forum for interaction among scientists and engineers from different areas of research, and young researchers.




Effect of Dwell-times on Crack Propagation in Superalloys


Book Description

Gas turbines are widely used in industry for power generation and as a power source at "hard to reach" locations where other possibilities for electrical supply are insufficient. There is a strong need for greener energy, considering the effect that pollution has had on global warming, and we need to come up with ways of producing cleaner electricity. A way to achieve this is by increasing the combustion temperature in gas turbines. This increases the demand on the high temperature performance of the materials used e.g. superalloys in the turbine. These high combustion temperatures can lead to detrimental degradation of critical components. These components are commonly subjected to cyclic loading of different types e.g. combined with dwell-times and overloads at elevated temperatures, which influence the crack growth. Dwell-times have shown to accelerate crack growth and change the cracking behaviour in both Inconel 718 and Haynes 282. Overloads at the beginning of the dwell-time cycle have shown to retard the dwell time effect on crack growth in Inconel 718. To understand these effects more microstructural investigations are needed. The work presented in this licentiate thesis was conducted under the umbrella of the research program Turbo Power; "High temperature fatigue crack propagation in nickel-based superalloys", concentrating on fatigue crack growth mechanisms in superalloys during dwell-times, which have shown to have a devastating effect on the crack propagation behaviour. Mechanical testing was performed under operation-like conditions in order to achieve representative microstructures and material data for the subsequent microstructural work. The microstructures were microscopically investigated in a scanning electron microscope (SEM) using electron channeling contrast imaging (ECCI) as well as using light optical microscopy. The outcome of this work has shown that there is a significant increase in crack growth rate when dwell-times are introduced at the maximum load (0% overload) in the fatigue cycle. With the introduction of a dwell-time there is also a shift from transgranular to intergranular crack growth for both Inconel 718 and Haynes 282. When an overload is applied prior to the dwell-time, the crack growth rate decreases with increasing overload levels in Inconel 718. At high temperature crack growth in Inconel 718 took place as intergranular crack growth along grain boundaries due to oxidation and the creation of nanometric voids. Another observed growth mechanism was crack advance along phase boundaries with subsequent severe oxidation of the phase. This thesis comprises two parts. The first giving an introduction to the field of superalloys and the acting microstructural mechanisms that influence fatigue during dwell times. The second part consists of two appended papers, which report the work completed so far in the project.




TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings


Book Description

This collection features papers presented at the 147th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society.




The Microstructure of Superalloys


Book Description

Presents all the main aspects of the microstructure of nickel-base superalloys, and includes micrographs chosen from among a large range of commercial and academic alloys, from the as-cast product to in-situ components, worn from in-service use. Including more than 100 illustrations, the text explains all the transformation mechanisms involved in the origination (creation) of microstructures during solidification or heat treatments (crystallization paths, segregation, crystal orientation, precipitation, TCP, coarsening and rafting, etc.). It includes up-to-date information and data such as phase diagrams, crystallographic structures, and relationships with functional properties. Nearly 300 references provide a key to further investigation.




Cracks in superalloys


Book Description

Gas turbines are widely used in industry for power generation and as a power source at hard to reach locations where other possibilities for electrical power supplies are insufficient. New ways of producing greener energy is needed to reduce emission levels. This can be achieved by increasing the combustion temperature of gas turbines. High combustion temperatures can be detrimental and degrade critical components. This raises the demands on the high temperature performance of the superalloys used in gas turbine components. These components are frequently subjected to different cyclic loads combined with for example dwell-times and overloads at elevated temperatures, which can influence the crack growth. Dwell-times have been shown to accelerate crack growth and change cracking behaviour in both Inconel 718, Haynes 282 and Hastelloy X. On the other hand, overloads at the beginning of a dwell-time cycle have been shown to retard the dwell-time effect on crack growth in Inconel 718. More experiments and microstructural investigations are needed to better understand these effects. The work presented in this thesis was conducted under the umbrella of the research program Turbo Power; "High temperature fatigue crack propagation in nickel-based superalloys", where I have mainly looked at fatigue crack growth mechanisms in superalloys subjected to dwell-fatigue, which can have a devastating effect on crack propagation behaviour. Mechanical testing was performed under operation-like cycles in order to achieve representative microstructures and material data for the subsequent microstructural work. Microstructures were investigated using light optical microscopy and scanning electron microscopy (SEM) techniques such as electron channeling contrast imaging (ECCI) and electron backscatter diffraction (EBSD). The outcome of this work has shown that there is a significant increase in crack growth rate when dwell-times are introduced at maximum load (0 % overload) in the fatigue cycle. With the introduction of a dwell-time there is also a shift from transgranular to intergranular crack growth for both Inconel 718 and Haynes 282. The crack growth rate decreases with increasing overload levels in Inconel 718 when an overload is applied prior to the dwell-time. At high temperature, intergranular crack growth was observed in Inconel 718 as a result of oxidation and the creation of nanometric voids. Another observed growth mechanism was crack advance along ?-phase boundaries with subsequent oxidation of the ?-phase. This thesis comprises two parts. Part I gives an introduction to the field of superalloys and the acting microstructural mechanisms related to fatigue and crack propagation. Part II consists of five appended papers, which report the work completed as part of the project.




Fatigue Crack Propagation in Metals and Alloys


Book Description

This comprehensive overview of the whole field of fatigue and fracture of metallic materials covers both the theoretical background and some of the latest experimental techniques. It provides a summary of the complex interactions between material microstructure and cracks, classifying them with respect to the overall damage process with a focus on microstructurally short cracks and dynamic embrittlement. It furthermore introduces new concepts for the numerical treatment of fatigue microcrack propagation and their implementation in fatigue-life prediction models.This comprehensive overview of the whole field of fatigue and fracture of metallic materials covers both the theoretical background and the latest experimental techniques. It provides a summary of the complex interactions between material microstructure and cracks, classifying them with respect to the overall damage process. It furthermore introduces new concepts for the numerical treatment of fatigue microcrack propagation and their implementation in fatigue-life prediction models.




Additive Manufacturing


Book Description

Additive Manufacturing explains the background theory, working principles, technical specifications, and latest developments in a wide range of additive manufacturing techniques. Topics addressed include treatments of manufactured parts, surface characterization, and the effects of surface treatments on mechanical behavior. Many different perspectives are covered, including design aspects, technologies, materials and sustainability. Experts in both academia and industry contribute to this comprehensive guide, combining theoretical developments with practical improvements from R&D. This unique guide allows readers to compare the characteristics of different processes, understand how they work, and provide parameters for their effective implementation. This book is part of a four-volume set entitled Handbooks in Advanced Manufacturing. Other titles in the set include Advanced Machining and Finishing, Advanced Welding and Deformation, and Sustainable Manufacturing Processes. - Provides theory, operational parameters, and latest developments in 20 different additive manufacturing processes - Includes contributions from experts in industry and academia with a wide range of disciplinary backgrounds, providing a comprehensive survey of this diverse and influential subject - Includes case studies of innovative additive manufacturing practices from industry







Proceedings: Creep & Fracture in High Temperature Components


Book Description

A compendium of European and worldwide research investigating creep, fatigue and failure behaviors in metals under high-temperature and other service stresses. It helps set the standards for coordinating creep data and for maintaining defect-free quality in high-temperature metals and metal-based weldments.




Superalloys 2012


Book Description

A superalloy, or high-performance alloy, is an alloy that exhibits excellent mechanical strength at high temperatures. Superalloy development has been driven primarily by the aerospace and power industries. This compilation of papers from the Twelfth International Symposium on Superalloys, held from September 9-13, 2012, offers the most recent technical information on this class of materials.