High Temperature Fracture Mechanisms and Mechanics (EGF Publication 6)


Book Description

The need for higher service temperatures and stresses in nuclear reactors and jet engines, for example, has produced a large number of studies on the behaviour and the rupture of materials at high temperatures in the last two decades.







Comprehensive Structural Integrity


Book Description

The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.




High Temperature Surface Engineering


Book Description

Over the last forty years a wide range of surface coatings have been developed to address the surface stability and thermal insulation of materials used in the gas turbine section of aero, industrial and land-based power generation equipment. High Temperature Surface Engineering, the Proceedings of the Sixth International Conference in the Series ‘Engineering the Surfaces’, reviews the surfacing technologies appropriate to oxidation, corrosion and thermal protection. Factors which underpin their choice for any given application are discussed in the proceedings. This highlights the importance of developing representative mechanical and physical test methods to elucidate coating degradation modes as an aid to establishing coating systems with improved engineering performance. During the organisation of the conference and in the compiling of this book we have been privileged to work with many of the leading specialists in the field of High Temperature Surface Engineering and it is our hope that this book will be a valuable reference guide for Engineers and Material Scientists.







Advances in Fracture Research


Book Description

Fracture is a major cause of failure in metallic and non-metallic materials and structures. An understanding of the micro- and macro- mechanisms of fracture enables materials scientists to develop materials with high fracture resistance, which in turn helps engineers and designers to ensure the soundness and integrity of structures made from these materials. The International Congress on Fracture is held every four years and is an occasion to take stock of the major achievements in the broad field of fracture, to honour those who have made lasting contributions to this field, and to reflect on the future directions. ICF9 is published in six volumes covering the areas of:-- Failure Analysis, Remaining Life Assessment, Life Extension and Repair- Failure of Multiphase and Non-Metallic Materials- Fatigue of Metallic and Non-Metallic Materials and Structures- Theoretical and Computational Fracture Mechanics and New Directions- Testing and Characterization Methods, and Interfacial Fracture Mechanics- High Strain Rate Fracture and Impact Mechanics.




Fatigue '96


Book Description

The aim of the 6th International Fatigue Congress, besides covering the entire field of fatigue, was to promote the intimate connection between basic science and engineering application by the selection of appropriate session topics.Fatigue is the main cause of failure of engineering structures and components. Making reliable fatigue predictions is highly difficult because knowledge about fatigue mechanisms in all stages of the fatigue process must be developed much further. In addition, the decreasing availability of raw materials and energy resources forces engineers to continually reduce the weight of constructions. This congress presents research results also particularly for new materials, including composites. Researchers, on the other hand, are confronted with the engineering demands. Futhermore, the overwhelming development which is presently taking place in the field of computer software and hardware dealing with fatigue problems is outlined along with the directions of future developments in all areas of fatigue.Close to 300 fully peer-reviewed papers are published in the proceedings, including nearly 30 overview and keynote papers covering the various session topics. The proceedings should therefore serve as a comprehensive review of the fatigue field at the present state-of-the-art, suitable for scientists, engineers and students.







From Charpy to Present Impact Testing


Book Description

From Charpy to Present Impact Testing contains 52 peer-reviewed papers selected from those presented at the Charpy Centenary Conference held in Poitiers, France, 2-5 October 2001. The name of Charpy remains associated with impact testing on notched specimens. At a time when many steam engines exploded, engineers were preoccupied with studying the resistance of steels to impact loading. The Charpy test has provided invaluable indications on the impact properties of materials. It revealed the brittle ductile transition of ferritic steels. The Charpy test is able to provide more quantitative results by instrumenting the striker, which allows the evolution of the applied load during the impact to be determined. The Charpy test is of great importance to evaluate the embrittlement of steels by irradiation in nuclear reactors. Progress in computer programming has allowed for a computer model of the test to be developed; a difficult task in view of its dynamic, three dimensional, adiabatic nature. Together with precise observations of the processes of fracture, this opens the possibility of transferring quantitatively the results of Charpy tests to real components. This test has also been extended to materials other than steels, and is also frequently used to test polymeric materials. Thus the Charpy test is a tool of great importance and is still at the root of a number of investigations; this is the reason why it was felt that the centenary of the Charpy test had to be celebrated. The Société Française de Métallurgie et de Matériaux decided to organise an international conference which was put under the auspices of the European Society for the Integrity of Structures (ESIS). This Charpy Centenary Conference (CCC 2001) was held in Poitiers, at Futuroscope in October 2001. More than 150 participants from 17 countries took part in the discussions and about one hundred presentations were given. An exhibition of equipment showed, not only present day testing machines, but also one of the first Charpy pendulums, brought all the way from Imperial College in London. From Charpy to Present Impact Testing puts together a number of significant contributions. They are classified into 6 headings: •Keynote lectures,•Micromechanisms,•Polymers,•Testing procedures,•Applications,•Modelling.




Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials


Book Description

The 4th International Conference on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials was held from 7-11 September 1998 in Garmisch-Partenkirchen, Germany. In response to a call for papers, nearly 200 extended abstracts from 32 countries were submitted to the organizing committee. These papers were presented at the conference as invited lectures or short contributions and as oral or poster presentation. All the papers were presented in poster form in extended poster sessions–a peculiarity of the LCF Conferences which allows an intense, thorough discussion of all contributions. Each chapter provides a comprehensive overview of a materials class or a given subject. Many contributions could have been included in two or even three chapters and so, in order to give a better overview of the content, the reader will find a subject index, a material index and an author index in the back of the book.