High Temperature Polymer Blends


Book Description

Polymer blends offer properties not easily obtained through the use of a single polymer, including the ability to withstand high temperatures. High Temperature Polymer Blends outlines the characteristics, developments, and use of high temperature polymer blends. The first chapter introduces high temperature polymer blends, their general principles, and thermodynamics. Further chapters go on to deal with the characterization of high temperature polymer blends for specific uses, such as fuel cells and aerospace applications. The book discusses different types of high temperature polymer blends, including liquid crystal polymers, polysulfones, and polybenzimidazole polymer blends and their commercial applications. High Temperature Polymer Blends provides a key reference for material scientists, polymer scientists, chemists, and plastic engineers, as well as academics in these fields. - Reviews characterization methods and analysis of the thermodynamic properties of high temperature polymer blends - Reviews the use of materials such as liquid crystals as reinforcements as well as applications in such areas as energy and aerospace engineering




High-temperature Properties and Applications of Polymeric Materials


Book Description

Presents information on the synthesis, processing, and characterization of polymers and polymer composites for high performance materials needing to withstand high temperatures. Discusses the synthesis and properties of new thermally stable polymers. Includes new approaches for modeling material processing and decomposition. Provides a broad perspective by examining the science and engineering aspects of polymeric materials for high-temperature applications.




Polymer Composites for Electrical Engineering


Book Description

Explore the diverse electrical engineering application of polymer composite materials with this in-depth collection edited by leaders in the field Polymer Composites for Electrical Engineering delivers a comprehensive exploration of the fundamental principles, state-of-the-art research, and future challenges of polymer composites. Written from the perspective of electrical engineering applications, like electrical and thermal energy storage, high temperature applications, fire retardance, power cables, electric stress control, and others, the book covers all major application branches of these widely used materials. Rather than focus on polymer composite materials themselves, the distinguished editors have chosen to collect contributions from industry leaders in the area of real and practical electrical engineering applications of polymer composites. The books relevance will only increase as advanced polymer composites receive more attention and interest in the area of advanced electronic devices and electric power equipment. Unique amongst its peers, Polymer Composites for Electrical Engineering offers readers a collection of practical and insightful materials that will be of great interest to both academic and industrial audiences. Those resources include: A comprehensive discussion of glass fiber reinforced polymer composites for power equipment, including GIS, bushing, transformers, and more) Explorations of polymer composites for capacitors, outdoor insulation, electric stress control, power cable insulation, electrical and thermal energy storage, and high temperature applications A treatment of semi-conductive polymer composites for power cables In-depth analysis of fire-retardant polymer composites for electrical engineering An examination of polymer composite conductors Perfect for postgraduate students and researchers working in the fields of electrical, electronic, and polymer engineering, Polymer Composites for Electrical Engineering will also earn a place in the libraries of those working in the areas of composite materials, energy science and technology, and nanotechnology.




Polymer Properties at Room and Cryogenic Temperatures


Book Description

Most descriptions of polymers start at room temperature and end at the melting point. This textbook starts at very low temperatures and ends at room temperature. At low temperatures, may processes and relaxations are frozen which allows singular processes or separate relaxations to be studied. At room temperatures, or at the main glass transitions, many processes overlap and the properties are determined by relaxations. At low temperatures, there are temperature ranges with negligible influences by glass transitions. They can be used for investigating so-called basic properties which arise from principles of solid state physics. The chain structure of polymers, however, requires stringent modifications for establishing solid state physics of polymers. Several processes which are specific of polymers, occur only at low temperatures. There are also technological aspects for considering polymers at low temperatures. More and more applications of polymeric materials in low temperature technology appear. Some examples are thermal and electrical insulations, support elements for cryogenic devices, low-loss materials for high frequency equipments. It is hoped that, in addition to the scientific part, a data collection in the appendix may help to apply polymers more intensively in low temperature technology. The author greatly appreciates the contributions by his coworkers of the Kernforschungszentrum Karlsruhe in measurement and discussion of many data presented in the textbook and its appendix. Fruitful disccussions with the colleagues Prof. H. Baur, Prof. S. Hunklinger, Prof. D. Munz and Prof. R.




The Effect of Long Term Thermal Exposure on Plastics and Elastomers


Book Description

This reference guide brings together a wide range of essential data on the effect of long term thermal exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data is supported by explanations of how to make use of the data in real-world engineering contexts. High heat environments are common in automotive, oil and gas, household appliances, coatings, space and aeronautics and many more end uses. As a result, thermal stability data are critically important to engineers designing parts particularly that replace metals, work that is common today as they look for ways to reduce weight. The data tables in this book enable engineers and scientists to select the right materials for a given product or application across a wide range of sectors. Several polymer classes are covered, including polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics and more, saving readers the need to contact suppliers. The book also includes introductory sections to provide background on plastic/polymer chemistry and formulation and plastic testing methods, providing the knowledge required to make best use of the data. Essential data and practical guidance for engineers and scientists working with plastics for use in high temperature environments Includes introductory chapters on polymer chemistry and its effect on thermal stability, providing the underpinning knowledge required to utilize the data Covers a wide range of commercial polymer classes, saving readers the need to contact suppliers




Thermal Degradation of Polymeric Materials


Book Description

Understanding the thermal degradation of polymers is of paramount importance for developing a rational technology of polymer processing and higher-temperature applications. Controlling degradation requires understanding of many different phenomena, including chemical mechanisms, the influence of polymer morphology, the complexities of oxidation chemistry, and the effects of stabilisers, fillers and other additives. This book offers a wealth of information for polymer researchers and processors requiring an understanding of the implications of thermal degradation on material and product performance.




Commercial Polymer Blends


Book Description

This book provides an in depth and unparalleled presentation of the compositions of virtually all polymer blends.




Fundamentals, Properties, and Applications of Polymer Nanocomposites


Book Description

This book is focused primarily on polymer nanocomposites, based on the author's research experience as well as open literature. The environmental health and safety aspects of nanomaterials and polymer nanocomposites, risk assessment and safety standards, and fire toxicity of polymer nanocomposites, are studied. In the final chapter, a brief overview of opportunities, trends, and challenges of polymer nanocomposites are included. Throughout the book, the theme is developed that polymer nanocomposites are a whole family of polymeric materials whose properties are capable of being tailored to meet specific applications. This volume serves as a general introduction to students and researchers just entering the field and to scholars from other subfields seeking information.




Porosity of Ceramics


Book Description

Focuses on the effects of porosity and microcracking on the physical properties of ceramics, particularly nominally single phase ceramics. The book elucidates the fundamental interrelationships determining the development and use of materials for actual and potential engineering needs. It aims to help in the understanding of porosity effects on other materials, from ceramic composties, cements and plasters to rocks, metals and polymers.;College or university bookshops may order five or more copies at a special student price, available on request.




Polymer Science and Engineering


Book Description

Polymers are used in everything from nylon stockings to commercial aircraft to artificial heart valves, and they have a key role in addressing international competitiveness and other national issues. Polymer Science and Engineering explores the universe of polymers, describing their properties and wide-ranging potential, and presents the state of the science, with a hard look at downward trends in research support. Leading experts offer findings, recommendations, and research directions. Lively vignettes provide snapshots of polymers in everyday applications. The volume includes an overview of the use of polymers in such fields as medicine and biotechnology, information and communication, housing and construction, energy and transportation, national defense, and environmental protection. The committee looks at the various classes of polymersâ€"plastics, fibers, composites, and other materials, as well as polymers used as membranes and coatingsâ€"and how their composition and specific methods of processing result in unparalleled usefulness. The reader can also learn the science behind the technology, including efforts to model polymer synthesis after nature's methods, and breakthroughs in characterizing polymer properties needed for twenty-first-century applications. This informative volume will be important to chemists, engineers, materials scientists, researchers, industrialists, and policymakers interested in the role of polymers, as well as to science and engineering educators and students.