Electromagnetic Acoustic Transducers


Book Description

This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs’ low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs’ contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical acoustics. New measurements have emerged with regard to four major subjects: in situ monitoring of dislocation behavior, determination of anisotropic elastic constants, pointwise elasticity mapping (RUM), and acoustic nonlinearity evolution. PART IV deals with a variety of individual issues encountered in industrial applications, for which the EMATs are believed to be the best solutions. This is proven by a number of field applications.




Laser Ultrasonics Techniques and Applications


Book Description

The first book devoted to laser techniques in the generation and reception of ultrasonic waves in materials, Laser Ultrasonics: Techniques and Applications provides a full description of the state of the art in all fields involving both lasers and ultrasonics. This practical book focuses mainly on the possible applications of the techniques, yet theory is discussed wherever necessary. After an introduction to ultrasonics and laser technology, the book reviews acousto-optics, various acousto-optic devices, and noninterferometric optical methods of measuring ultrasonic displacements. The authors then describe opto-acoustic techniques, discussing laser interferometry, including reference-beam, velocity, and Fabry-Perot systems, and their application to ultrasonic measurement on different surfaces. The authors also detail the generation of ultrasound as a consequence of the absorption of laser light in material. The book proceeds to discuss applications of laser-generated ultrasound, both by itself and in combination with laser interferometric reception to form an entirely remote and non-contact measurement and testing system. Comparisons with nonoptical techniques for ultrasonic generation and detection are made where appropriate. The book concludes with a discussion of the future developments and uses of laser techniques in ultrasonics, with particular reference to nondestructive testing.




Sensors for Ultrasonic NDT in Harsh Environments


Book Description

In this Special Issue of Sensors, seven peer-reviewed manuscripts appear on the topic of ultrasonic transducer design and operation in harsh environments: elevated temperature, high gamma and neutron radiation fields, or the presence of aggressive chemicals. Motivations for these research and development projects are strongly focused on nuclear power plant inspections (particularly liquid-sodium cooled reactors), and nondestructive testing of high-temperature piping installations. It is anticipated that extensive use of permanently mounted robust transducers for in-service monitoring of petrochemical plants and power generations stations; quality control in manufacturing plants; and primary and secondary process monitoring in the fabrication of engineering materials will soon be made.




Ultrasonic Waves in Solid Media


Book Description

Explains the physical principles of wave propagation and relates them to ultrasonic wave mechanics and the more recent guided wave techniques that are used to inspect and evaluate aircraft, power plants, and pipelines in chemical processing. An invaluable reference to this active field for graduate students, researchers, and practising engineers.





Book Description




EMATs for Science and Industry


Book Description

EMATs for Science and Industry comprises the physical principles of electromagnetic acoustic transducers (EMATs) and the applications to scientific and industrial ultrasonic measurements on materials. The text is arranged in four parts: -PART I is intended to be a self-contained description of the basic elements of coupling mechanism along with practical designing of EMATs for various purposes. There are several implementations to compensate for the low transfer efficiency of the EMATs. Useful tips to make an EMAT are also presented. -PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of contactless nature of EMATs and is the most successful amplification mechanism for precise velocity and attenuation measurements. -PART III applies EMAR to studying the physical acoustics. New measurements emerged on three major subjects; in situ monitoring of dislocation behavior, determination of anisotropic elastic constants, and acoustic nonlinearity evolution. -PART IV deals with a variety of individual topics encountered in industrial applications, for which the EMATs are believed to the best solutions. The authors' work in this area has shown Electromagnetic acoustic resonance (EMAR) to be applicable not only to the acoustoelastic stress measurements, but also to many other nondestructive evaluation issues, including the determination of attenuation in solids. Noncontact measurement with high enough signal intensity was striking. Basic preconditions of theoretical approaches were realized by eliminating artifacts caused by the contact transducers. EMAR thus illuminated antiquated theories, which were accepted to be of little use or limited to qualitative interpretation of observations. It also uncovered interesting phenomena. Continuous monitoring of attenuation and acoustic nonlinearity resulted in the detection of ongoing microstructure evolutions in deforming or fatiguing metals. The aim of this book is to provide practical answers to the needs of ultrasonic measurements as well as an understanding of a novel methodology.







Intelligent Sensing Technologies for Nondestructive Evaluation


Book Description

This book is a printed edition of the Special Issue "Intelligent Sensing Technologies for Nondestructive Evaluation" that was published in Sensors




NBS Special Publication


Book Description