High-Voltage Test and Measuring Techniques


Book Description

The new edition of this book incorporates the recent remarkable changes in electric power generation, transmission and distribution. The consequences of the latest development to High Voltage (HV) test and measuring techniques result in new chapters on Partial Discharge measurements, Measurements of Dielectric Properties, and some new thoughts on the Shannon Theorem and Impuls current measurements. This standard reference of the international high-voltage community combines high voltage engineering with HV testing techniques and HV measuring methods. Based on long-term experience gained by the authors the book reflects the state of the art as well as the future trends in testing and diagnostics of HV equipment. It ensures a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.







High Voltage Measurement Techniques


Book Description

This book conveys the theoretical and experimental basics of a well-founded measurement technique in the areas of high DC, AC and surge voltages as well as the corresponding high currents. Additional chapters explain the acquisition of partial discharges and the electrical measured variables. Equipment exposed to very high voltages and currents is used for the transmission and distribution of electrical energy. They are therefore tested for reliability before commissioning using standardized and future test and measurement procedures. Therefore, the book also covers procedures for calibrating measurement systems and determining measurement uncertainties, and the current state of measurement technology with electro-optical and magneto-optical sensors is discussed.




High Impulse Voltage and Current Measurement Techniques


Book Description

Equipment to be installed in electric power-transmission and distribution systems must pass acceptance tests with standardized high-voltage or high-current test impulses which simulate the stress on the insulation caused by external lightning discharges and switching operations in the grid. High impulse voltages and currents are also used in many other fields of science and engineering for various applications. Therefore, precise impulse-measurement techniques are necessary, either to prevent an over- or understressing of the insulation or to guarantee the effectiveness and quality of the application. The target audience primarily comprises engineers and technicians but the book may also be beneficial for graduate students of high-voltage engineering and electrical power supply systems.




High Voltage Engineering and Testing


Book Description

High voltage, Electrical engineering, Electronic engineering, Electrical testing, Building and Construction




High Voltage Engineering


Book Description

This book is based on the leading German reference book on high voltage engineering. It includes innovative insulation concepts, new physical knowledge and new insulating materials, emerging techniques for testing, measuring and diagnosis, as well as new fields of application, such as high voltage direct current (HVDC) transmission. It provides an excellent access to high voltage engineering – for engineers, experts and scientists, as well as for students. High voltage engineering is not only a key technology for a safe, economic and sustainable electricity supply, which has become one of the most important challenges for modern society. Furthermore, a broad spectrum of industrial applications of high voltage technologies is used in most of the innovative fields of engineering and science. The book comprehensively covers the contents ranging from electrical field stresses and dielectric strengths through dielectrics, materials and technologies to typical insulation systems for AC, DC and impulse stresses. Thereby, the book provides a unique and successful combination of scientific foundations, modern technologies and practical applications, and it is clearly illustrated by many figures, examples and exercises. Therefore, it is an essential tool both for teaching at universities and for the users of high voltage technologies.




High Voltage Test Techniques


Book Description

The second edition of High Voltage Test Techniques has been completely revised. The present revision takes into account the latest international developments in High Voltage and Measurement technology, making it an essential reference for engineers in the testing field. High Voltage Technology belongs to the traditional area of Electrical Engineering. However, this is not to say that the area has stood still. New insulating materials, computing methods and voltage levels repeatedly pose new problems or open up methods of solution; electromagnetic compatibility (EMC) or components and systems also demand increased attention. The authors hope that their experience will be of use to students of Electrical Engineering confronted with High Voltage problems in their studies, in research and development and also in the testing field. - Benefit from a completely revised edition - Brings you up-to-date with th latest international developments in High Voltage and Measurement technology - An essential reference for engineers in the testing field




High Voltage Engineering Fundamentals


Book Description

Power transfer for large systems depends on high system voltages. The basics of high voltage laboratory techniques and phenomena, together with the principles governing the design of high voltage insulation, are covered in this book for students, utility engineers, designers and operators of high voltage equipment. In this new edition the text has been entirely revised to reflect current practice. Major changes include coverage of the latest instrumentation, the use of electronegative gases such as sulfur hexafluoride, modern diagnostic techniques, and high voltage testing procedures with statistical approaches. - A classic text on high voltage engineering - Entirely revised to bring you up-to-date with current practice - Benefit from expanded sections on testing and diagnostic techniques




Foundations of Pulsed Power Technology


Book Description

Examines the foundation of pulse power technology in detail to optimize the technology in modern engineering settings Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow. Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interference and noise suppression; and EM topology for interference control. In addition, the book: Acts as a reference for practicing engineers as well as a teaching text Features relevant design equations derived from the fundamental concepts in a single reference Contains lucid presentations of the mechanisms of electrical breakdown in gaseous, liquid, solid and vacuum dielectrics Provides extensive illustrations and references Foundations of Pulsed Power Technology will be an invaluable companion for professionals working in the fields of relativistic electron beams, intense bursts of light and heavy ions, flash X-ray systems, pulsed high magnetic fields, ultra-wide band electromagnetics, nuclear electromagnetic pulse simulation, high density fusion plasma, and high energy- rate metal forming techniques.




High Voltage Engineering


Book Description

Inspired by a new revival of worldwide interest in extra-high-voltage (EHV) and ultra-high-voltage (UHV) transmission, High Voltage Engineering merges the latest research with the extensive experience of the best in the field to deliver a comprehensive treatment of electrical insulation systems for the next generation of utility engineers and electric power professionals. The book offers extensive coverage of the physical basis of high-voltage engineering, from insulation stress and strength to lightning attachment and protection and beyond. Presenting information critical to the design, selection, testing, maintenance, and operation of a myriad of high-voltage power equipment, this must-have text: Discusses power system overvoltages, electric field calculation, and statistical analysis of ionization and breakdown phenomena essential for proper planning and interpretation of high-voltage tests Considers the breakdown of gases (SF6), liquids (insulating oil), solids, and composite materials, as well as the breakdown characteristics of long air gaps Describes insulation systems currently used in high-voltage engineering, including air insulation and insulators in overhead power transmission lines, gas-insulated substation (GIS) and cables, oil-paper insulation in power transformers, paper-oil insulation in high-voltage cables, and polymer insulation in cables Examines contemporary practices in insulation coordination in association with the International Electrotechnical Commission (IEC) definition and the latest standards Explores high-voltage testing and measuring techniques, from generation of test voltages to digital measuring methods With an emphasis on handling practical situations encountered in the operation of high-voltage power equipment, High Voltage Engineering provides readers with a detailed, real-world understanding of electrical insulation systems, including the various factors affecting—and the actual means of evaluating—insulation performance and their application in the establishment of technical specifications.