Higher Mathematics for Physics and Engineering


Book Description

Due to the rapid expansion of the frontiers of physics and engineering, the demand for higher-level mathematics is increasing yearly. This book is designed to provide accessible knowledge of higher-level mathematics demanded in contemporary physics and engineering. Rigorous mathematical structures of important subjects in these fields are fully covered, which will be helpful for readers to become acquainted with certain abstract mathematical concepts. The selected topics are: - Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis. This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.




Advanced Mathematics for Engineers and Scientists


Book Description

This book can be used as either a primary text or a supplemental reference for courses in applied mathematics. Its core chapters are devoted to linear algebra, calculus, and ordinary differential equations. Additional topics include partial differential equations and approximation methods. Each chapter features an ample selection of solved problems. These problems were chosen to illustrate not only how to solve various algebraic and differential equations but also how to interpret the solutions in order to gain insight into the behavior of the system modeled by the equation. In addition to the worked-out problems, numerous examples and exercises appear throughout the text.




Higher Mathematics for Science and Engineering


Book Description

This textbook provides a comprehensive, thorough and up-to-date treatment of topics of mathematics that an engineer and scientist would need, at the basic levels that contents of engineering and sciences are built by. For this purpose, natural readers would be junior and senior undergraduate students, who normally have the content of this book under different names on their degree plans. Also, engineers and scientists will benefit from this book since the book is a comprehensive volume for such audiences. This book is written in a way that it balances both theory and practical applications of topics from linear algebra, matrix theory, calculus of multivariable, theory of complex variables, several transforms, ordinary and partial differential equations, difference equations, optimization, probability, statistics, theory of reliability and finally, applications from variety of areas of sciences and engineering.




Higher Mathematics for Engineering and Technology


Book Description

Based on and enriched by the long-term teaching experience of the authors, this volume covers the major themes of mathematics in engineering and technical specialties. The book addresses the elements of linear algebra and analytic geometry, differential calculus of a function of one variable, and elements of higher algebra. On each theme the authors first present short theoretical overviews and then go on to give problems to be solved. The authors provide the solutions to some typical, relatively difficult problems and guidelines for solving them. The authors consider the development of the self-dependent thinking ability of students in the construction of problems and indicate which problems are relatively difficult. The book is geared so that some of the problems presented can be solved in class, and others are meant to be solved independently. An extensive, explanatory solution of at least one typical problem is included, with emphasis on applications, formulas, and rules. This volume is primarily addressed to advanced students of engineering and technical specialties as well as to engineers/technicians and instructors of mathematics. Key features: Presents the theoretical background necessary for solving problems, including definitions, rules, formulas, and theorems on the particular theme Provides an extended solution of at least one problem on every theme and guidelines for solving some difficult problems Selects problems for independent study as well as those for classroom time, taking into account the similarity of both sets of problems Differentiates relatively difficult problems from others for those who want to study mathematics more deeply Provides answers to the problems within the text rather than at the back of the book, enabling more direct verification of problem solutions Presents a selection of problems and solutions that are very interesting not only for the students but also for professor-teacher staff







Science and Mathematics for Engineering


Book Description

A practical introduction to the engineering science and mathematics required for engineering study and practice. Science and Mathematics for Engineering is an introductory textbook that assumes no prior background in engineering. This new edition covers the fundamental scientific knowledge that all trainee engineers must acquire in order to pass their examinations and has been brought fully in line with the compulsory science and mathematics units in the new engineering course specifications. A new chapter covers present and future ways of generating electricity, an important topic. John Bird focuses upon engineering examples, enabling students to develop a sound understanding of engineering systems in terms of the basic laws and principles. This book includes over 580 worked examples, 1300 further problems, 425 multiple choice questions (with answers), and contains sections covering the mathematics that students will require within their engineering studies, mechanical applications, electrical applications and engineering systems. This book is supported by a companion website of materials that can be found at www.routledge/cw/bird. This resource includes fully worked solutions of all the further problems for students to access, and the full solutions and marking schemes for the revision tests found within the book for instructor use. In addition, all 447 illustrations will be available for downloading by lecturers.




Essential Mathematics for Engineers and Scientists


Book Description

Clear and engaging introduction for graduate students in engineering and the physical sciences to essential topics of applied mathematics.




Higher Engineering Mathematics


Book Description

Now in its eighth edition, Higher Engineering Mathematics has helped thousands of students succeed in their exams. Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced engineering mathematics that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper-level vocational courses and for undergraduate degree courses. It is also supported by a fully updated companion website with resources for both students and lecturers. It has full solutions to all 2,000 further questions contained in the 277 practice exercises.




Advanced Mathematical Methods for Scientists and Engineers I


Book Description

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.




Advanced Mathematics for Engineering Students


Book Description

Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author’s university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a “toolbox” for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations)