Asymptotic Theory of Testing Statistical Hypotheses


Book Description

The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.










Asymptotic Statistics


Book Description

This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master's level statistics text, this book will also give researchers an overview of research in asymptotic statistics.




Selected collected works


Book Description

Professor Puri is one of the most versatile and prolific researchers in the world in mathematical statistics. His research areas include nonparametric statistics, order statistics, limit theory under mixing, time series, splines, tests of normality, generalized inverses of matrices and related topics, stochastic processes, statistics of directional data, random sets, and fuzzy sets and fuzzy measures. His fundamental contributions in developing new rank-based methods and precise evaluation of the standard procedures, asymptotic expansions of distributions of rank statistics, as well as large deviation results concerning them, span such areas as analysis of variance, analysis of covariance, multivariate analysis, and time series, to mention a few. His in-depth analysis has resulted in pioneering research contributions to prominent journals that have substantial impact on current research. This book together with the other two volumes (Volume 1: Nonparametric Methods in Statistics and Related Topics; Volume 3: Time Series, Fuzzy Analysis and Miscellaneous Topics), are a concerted effort to make his research works easily available to the research community. The sheer volume of the research output by him and his collaborators, coupled with the broad spectrum of the subject matters investigated, and the great number of outlets where the papers were published, attach special significance in making these works easily accessible. The papers selected for inclusion in this work have been classified into three volumes each consisting of several parts. All three volumes carry a final part consisting of the contents of the other two, as well as the complete list of Professor Puri'spublications.




Statistical Inference and Machine Learning for Big Data


Book Description

This book presents a variety of advanced statistical methods at a level suitable for advanced undergraduate and graduate students as well as for others interested in familiarizing themselves with these important subjects. It proceeds to illustrate these methods in the context of real-life applications in a variety of areas such as genetics, medicine, and environmental problems. The book begins in Part I by outlining various data types and by indicating how these are normally represented graphically and subsequently analyzed. In Part II, the basic tools in probability and statistics are introduced with special reference to symbolic data analysis. The most useful and relevant results pertinent to this book are retained. In Part III, the focus is on the tools of machine learning whereas in Part IV the computational aspects of BIG DATA are presented. This book would serve as a handy desk reference for statistical methods at the undergraduate and graduate level as well as be useful in courses which aim to provide an overview of modern statistics and its applications.




Mathematical Statistics


Book Description

This book presents a detailed description of the development of statistical theory. In the mid twentieth century, the development of mathematical statistics underwent an enduring change, due to the advent of more refined mathematical tools. New concepts like sufficiency, superefficiency, adaptivity etc. motivated scholars to reflect upon the interpretation of mathematical concepts in terms of their real-world relevance. Questions concerning the optimality of estimators, for instance, had remained unanswered for decades, because a meaningful concept of optimality (based on the regularity of the estimators, the representation of their limit distribution and assertions about their concentration by means of Anderson’s Theorem) was not yet available. The rapidly developing asymptotic theory provided approximate answers to questions for which non-asymptotic theory had found no satisfying solutions. In four engaging essays, this book presents a detailed description of how the use of mathematical methods stimulated the development of a statistical theory. Primarily focused on methodology, questionable proofs and neglected questions of priority, the book offers an intriguing resource for researchers in theoretical statistics, and can also serve as a textbook for advanced courses in statisticc.







Proceedings of the Seventh Conference on Probability Theory


Book Description

No detailed description available for "Proceedings of the Seventh Conference on Probability Theory".