Epigenetic Contributions in Autoimmune Disease


Book Description

This volume focuses on the relevance of epigenetic mechanisms in autoimmune disease. It provides new directions for future research in autoimmune disease.




HiC-Pro: an Optimized and Flexible Pipeline for Hi-C Data Processing


Book Description

HiC-Pro is an optimized and flexible pipeline for processing Hi-C data from raw reads to normalized contact maps. HiC-Pro maps reads, detects valid ligation products, performs quality controls and generates intra- and inter-chromosomal contact maps. It includes a fast implementation of the iterative correction method and is based on a memory-efficient data format for Hi-C contact maps. In addition, HiC-Pro can use phased genotype data to build allele-specific contact maps. We applied HiC-Pro to different Hi-C datasets, demonstrating its ability to easily process large data in a reasonable time. Source code and documentation are available at http://github.com/nservant/HiC-Pro.




Nuclear Dynamics


Book Description

The dynamics of nuclear structures described in this book furnish the basis for a comprehensive understanding of how the higher-order organization and function of the nucleus is established and how it correlates with the expression of a variety of vital activities such as cell proliferation and differentiation. The resulting volume creates an invaluable source of reference for researchers in the field.




Introduction to Epigenetics


Book Description

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease




Nuclear Architecture and Dynamics


Book Description

Nuclear Architecture and Dynamics provides a definitive resource for (bio)physicists and molecular and cellular biologists whose research involves an understanding of the organization of the genome and the mechanisms of its proper reading, maintenance, and replication by the cell. This book brings together the biochemical and physical characteristics of genome organization, providing a relevant framework in which to interpret the control of gene expression and cell differentiation. It includes work from a group of international experts, including biologists, physicists, mathematicians, and bioinformaticians who have come together for a comprehensive presentation of the current developments in the nuclear dynamics and architecture field. The book provides the uninitiated with an entry point to a highly dynamic, but complex issue, and the expert with an opportunity to have a fresh look at the viewpoints advocated by researchers from different disciplines. - Highlights the link between the (bio)chemistry and the (bio)physics of chromatin - Deciphers the complex interplay between numerous biochemical factors at task in the nucleus and the physical state of chromatin - Provides a collective view of the field by a large, diverse group of authors with both physics and biology backgrounds




The Cell Biology of Stem Cells


Book Description

Stem cells have been gaining a lot of attention in recent years. Their unique potential to self-renew and differentiate has turned them into an attractive model for the study of basic biological questions such as cell division, replication, transcription, cell fate decisions, and more. With embryonic stem (ES) cells that can generate each cell type in the mammalian body and adult stem cells that are able to give rise to the cells within a given lineage, basic questions at different developmental stages can be addressed. Importantly, both adult and embryonic stem cells provide an excellent tool for cell therapy, making stem cell research ever more pertinent to regenerative medicine. As the title The Cell Biology of Stem Cells suggests, our book deals with multiple aspects of stem cell biology, ranging from their basic molecular characteristics to the in vivo stem cell trafficking of adult stem cells and the adult stem-cell niche, and ends with a visit to regeneration and cell fate reprogramming. In the first chapter, “Early embryonic cell fate decisions in the mouse”, Amy Ralson and Yojiro Yamanaka describe the mechanisms that support early developmental decisions in the mouse pre-implantation embryo and the current understanding of the source of the most immature stem cell types, which includes ES cells, trophoblast stem (TS) cells and extraembryonic endoderm stem (XEN) cells.




Hematopoietic Differentiation of Human Pluripotent Stem Cells


Book Description

This book features the most cutting-edge work from the world’s leading laboratories in this field and provides practical methods for differentiating pluripotent stem cells into hematopoietic lineages in the blood system. Pluripotent stem cells have attracted major interest from a fast-growing and multidisciplinary community of researchers who are developing new techniques for the derivation and differentiation of these cells into specific cell lineages. These direct differentiation methods hold great promise for the translational applications of these cells. This book is an essential reference work for researchers at all levels in the fields of hematology and stem cell biology, as well as clinical practitioners in regenerative medicine.




Stem Cell Epigenetics


Book Description

Growing evidence suggests that epigenetic mechanisms play a central role in stem cell biology and are vital for determining gene expression during cellular differentiation and governing mammalian development. In Stem Cell Epigenetics, leading international researchers examine how chromatin regulation and bona fide epigenetic mechanisms underlie stem cell renewal and differentiation. Authors also explore how the diversity of cell types, including the extent revealed by single cell omic approaches, is achieved, and how such processes may be reversed or managed via epigenetic reprogramming.Topics discussed include chromatin in pluripotency, stem cells and DNA methylation, histone modifications in stem cells and differentiation, higher-order chromatin conformation in pluripotent cells, stem cells and cancer, epigenetics and disease modeling, brain organoids from pluripotent cells, transcriptional regulation in stem cells and differentiation, non-coding RNAs in pluripotency and early differentiation, and diseases caused by epigenetic alterations in stem cells. Additionally, the book discusses the potential implementation of stem cell epigenetics in drug discovery, regenerative medicine, and disease treatment. Stem Cell Epigenetics will provide researchers and physicians with a state-of-the-art map to orient across the frontiers of this fast-evolving field. - Analyzes the role of epigenetics in embryonic stem cell regulation - Indicates the epigenetic mechanisms involved in stem cell differentiation and highlights modifications and misregulations that may result in disease pathogenesis - Examines the potential applications of stem cell epigenetics in therapeutic disease interventions and regenerative medicine, providing a foundation for researchers and physicians to bring this exciting and fast-evolving field into a clinical setting - Features chapter contributions by leading international experts




The Structure and Function of Chromatin


Book Description

The Novartis Foundation Series is a popular collection of the proceedings from Novartis Foundation Symposia, in which groups of leading scientists from a range of topics across biology, chemistry and medicine assembled to present papers and discuss results. The Novartis Foundation, originally known as the Ciba Foundation, is well known to scientists and clinicians around the world.