Highly Efficient Deep Intelligence Via Multi-Parent Evolutionary Synthesis of Deep Neural Networks


Book Description

Machine learning methods, and particularly deep neural networks, are a rapidly growing field and are currently being employed in domains such as science, business, and government. However, the significant success of neural networks has largely been due to the increasingly large model sizes and enormous amounts of required training data. As a result, powerful neural networks are accompanied by growing storage and memory requirements, making these powerful models infeasible for practical scenarios that use small embedded devices without access to cloud computing. As such, methods for significantly reducing the memory and computational requirements of high-performing deep neural networks via sparsification and/or compression have been developed. More recently, the concept of evolutionary deep intelligence was proposed, and takes inspiration from nature and allows highly-efficient deep neural networks to organically synthesize over successive generations. However, current work in evolutionary deep intelligence has been limited to the use of asexual evolutionary synthesis where a newly synthesized offspring network is solely dependent on a single parent network from the preceding generation. In this thesis, we introduce a general framework for synthesizing efficient neural network architectures via multi-parent evolutionary synthesis. Generalized from the asexual evolutionary synthesis approach, the framework allows for a newly synthesized network to be dependent on a subset of all previously synthesized networks. By imposing constraints on this general framework, the cases of asexual evolutionary synthesis, 2-parent sexual evolutionary synthesis, and m-parent evolutionary synthesis can all be realized. We explore the computational construct used to mimic heredity, and generalize it beyond the asexual evolutionary synthesis used in current evolutionary deep intelligence works. The efficacy of incorporating multiple parent networks during evolutionary synthesis was examined first in the context of 2-parent sexual evolutionary synthesis, then generalized to m-parent evolutionary synthesis in the context of varying generational population sizes. Both experiments show that the use of multiple parent networks during evolutionary synthesis allows for increased network diversity as well as steeper trends in increasing network efficiency over generations. We also introduce the concept of gene tagging within the evolutionary deep intelligence framework as a means to enforce a like-with-like mating policy during the multi-parent evolutionary synthesis process, and evaluate the effect of architectural alignment during multi-parent evolutionary synthesis. We present an experiment exploring the quantification of network architectural similarity in populations of networks. In addition, we investigate the the computational construct used to mimic natural selection. The impact of various environmental resource models used to mimic the constraint of available computational and storage resources on network synthesis over successive generations is explored, and results clearly demonstrate the trade-off between computation time and optimal model performance. The results of m-parent evolutionary synthesis are promising, and indicate the potential benefits of incorporating multiple parent networks during evolutionary synthesis for highly-efficient evolutionary deep intelligence. Future work includes studying the effects of inheriting weight values (as opposed to random initialization) on total training time and further investigation of potential structural similarity metrics, with the goal of developing a deeper understanding of the underlying effects of network architecture on performance.




Deep Neural Evolution


Book Description

This book delivers the state of the art in deep learning (DL) methods hybridized with evolutionary computation (EC). Over the last decade, DL has dramatically reformed many domains: computer vision, speech recognition, healthcare, and automatic game playing, to mention only a few. All DL models, using different architectures and algorithms, utilize multiple processing layers for extracting a hierarchy of abstractions of data. Their remarkable successes notwithstanding, these powerful models are facing many challenges, and this book presents the collaborative efforts by researchers in EC to solve some of the problems in DL. EC comprises optimization techniques that are useful when problems are complex or poorly understood, or insufficient information about the problem domain is available. This family of algorithms has proven effective in solving problems with challenging characteristics such as non-convexity, non-linearity, noise, and irregularity, which dampen the performance of most classic optimization schemes. Furthermore, EC has been extensively and successfully applied in artificial neural network (ANN) research —from parameter estimation to structure optimization. Consequently, EC researchers are enthusiastic about applying their arsenal for the design and optimization of deep neural networks (DNN). This book brings together the recent progress in DL research where the focus is particularly on three sub-domains that integrate EC with DL: (1) EC for hyper-parameter optimization in DNN; (2) EC for DNN architecture design; and (3) Deep neuroevolution. The book also presents interesting applications of DL with EC in real-world problems, e.g., malware classification and object detection. Additionally, it covers recent applications of EC in DL, e.g. generative adversarial networks (GAN) training and adversarial attacks. The book aims to prompt and facilitate the research in DL with EC both in theory and in practice.




Deep Neural Network Applications


Book Description

The world is on the verge of fully ushering in the fourth industrial revolution, of which artificial intelligence (AI) is the most important new general-purpose technology. Like the steam engine that led to the widespread commercial use of driving machineries in the industries during the first industrial revolution; the internal combustion engine that gave rise to cars, trucks, and airplanes; electricity that caused the second industrial revolution through the discovery of direct and alternating current; and the Internet, which led to the emergence of the information age, AI is a transformational technology. It will cause a paradigm shift in the way’s problems are solved in every aspect of our lives, and, from it, innovative technologies will emerge. AI is the theory and development of machines that can imitate human intelligence in tasks such as visual perception, speech recognition, decision-making, and human language translation. This book provides a complete overview on the deep learning applications and deep neural network architectures. It also gives an overview on most advanced future-looking fundamental research in deep learning application in artificial intelligence. Research overview includes reasoning approaches, problem solving, knowledge representation, planning, learning, natural language processing, perception, motion and manipulation, social intelligence and creativity. It will allow the reader to gain a deep and broad knowledge of the latest engineering technologies of AI and Deep Learning and is an excellent resource for academic research and industry applications.




Evolutionary Multi-objective Bi-level Optimization for Efficient Deep Neural Network Architecture Design


Book Description

Deep convolutional neural networks (CNNs) are the backbones of deep learning (DL) paradigms for numerous vision tasks, including object recognition, detection, segmentation, etc. Early advancements in CNN architectures are primarily driven by human expertise and elaborate design. Recently, neural architecture search (NAS) was proposed with the aim of automating the network design process and generating task-dependent architectures. While existing approaches have achieved competitive performance, they are still impractical to real-world deployment for three reasons: (1) the generated architectures are solely optimized for predictive performance, resulting in inefficiency in utilizing hardware resources---i.e. energy consumption, latency, memory size, etc.; (2) the search processes require vast computational resources in most approaches; (3) most existing approaches require one complete search for each deployment specification of hardware or requirement. In this dissertation, we propose an efficient evolutionary NAS algorithm to address the aforementioned limitations. In particular, we first introduce Pareto-optimization to NAS, leading to a diverse set of architectures, trading-off multiple objectives, being obtained simultaneously in one run. We then improve the algorithm's search efficiency through surrogate models. We finally integrate a transfer learning scheme to the algorithm that allows a new task to leverage previous search efforts that further improves both the performance of the obtained architectures and search efficiency. Therefore, the proposed algorithm enables an automated and streamlined process to efficiently generate task-specific custom neural network models that are competitive under multiple objectives.




Multi-faceted Deep Learning


Book Description

This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem–oriented chapters. The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks. Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.




Architecture Design for Highly Flexible and Energy-efficient Deep Neural Network Accelerators


Book Description

Deep neural networks (DNNs) are the backbone of modern artificial intelligence (AI). However, due to their high computational complexity and diverse shapes and sizes, dedicated accelerators that can achieve high performance and energy efficiency across a wide range of DNNs are critical for enabling AI in real-world applications. To address this, we present Eyeriss, a co-design of software and hardware architecture for DNN processing that is optimized for performance, energy efficiency and flexibility. Eyeriss features a novel Row-Stationary (RS) dataflow to minimize data movement when processing a DNN, which is the bottleneck of both performance and energy efficiency. The RS dataflow supports highly-parallel processing while fully exploiting data reuse in a multi-level memory hierarchy to optimize for the overall system energy efficiency given any DNN shape and size. It achieves 1.4x to 2.5x higher energy efficiency than other existing dataflows. To support the RS dataflow, we present two versions of the Eyeriss architecture. Eyeriss v1 targets large DNNs that have plenty of data reuse. It features a flexible mapping strategy for high performance and a multicast on-chip network (NoC) for high data reuse, and further exploits data sparsity to reduce processing element (PE) power by 45% and off-chip bandwidth by up to 1.9x. Fabricated in a 65nm CMOS, Eyeriss v1 consumes 278 mW at 34.7 fps for the CONV layers of AlexNet, which is 10× more efficient than a mobile GPU. Eyeriss v2 addresses support for the emerging compact DNNs that introduce higher variation in data reuse. It features a RS+ dataflow that improves PE utilization, and a flexible and scalable NoC that adapts to the bandwidth requirement while also exploiting available data reuse. Together, they provide over 10× higher throughput than Eyeriss v1 at 256 PEs. Eyeriss v2 also exploits sparsity and SIMD for an additional 6× increase in throughput.




The Master Algorithm


Book Description

Recommended by Bill Gates A thought-provoking and wide-ranging exploration of machine learning and the race to build computer intelligences as flexible as our own In the world's top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.




Dive Into Deep Learning


Book Description

The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.




Multi-Objective Optimization using Evolutionary Algorithms


Book Description

Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.




Artificial Intelligence in Asset Management


Book Description

Artificial intelligence (AI) has grown in presence in asset management and has revolutionized the sector in many ways. It has improved portfolio management, trading, and risk management practices by increasing efficiency, accuracy, and compliance. In particular, AI techniques help construct portfolios based on more accurate risk and return forecasts and more complex constraints. Trading algorithms use AI to devise novel trading signals and execute trades with lower transaction costs. AI also improves risk modeling and forecasting by generating insights from new data sources. Finally, robo-advisors owe a large part of their success to AI techniques. Yet the use of AI can also create new risks and challenges, such as those resulting from model opacity, complexity, and reliance on data integrity.