Hilbert Flow Spaces with Operators over Topological Graphs


Book Description

The main purpose of this paper is to extend Banach or Hilbert spaces to Banach or Hilbert continuity flow spaces over topological graphs and establish differentials on continuity flows for characterizing their globally change rate.




COMPLEX SYSTEM WITH FLOWS AND SYNCHRONIZATION


Book Description

The main purpose of this lecture is to clarify the complex system with that of contradictory system and its importance to the reality of a thing T by extending Banach or Hilbert spaces to Banach or Hilbert continuity flow spaces over topological graphs and establishing the global differential theory on complex flows.




MATHEMATICAL COMBINATORICS, Vol. 4 / 2017


Book Description

The Mathematical Combinatorics (International Book Series) is a fully refereed international book series with ISBN number on each issue, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 110-160 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences.




MATHEMATICAL REALITY


Book Description

A thing is complex, and hybrid with other things sometimes. Then, what is the reality of a thing? The reality of a thing is its state of existed, exists, or will exist in the world, independent on the understanding of human beings, which implies that the reality holds on by human beings maybe local or gradual, not the reality of a thing. Hence, to hold on the reality of things is the main objective of science in the history of human development.




International Journal of Mathematical Combinatorics, vol. 4/2019


Book Description

The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr.Linfan MAO on mathematical sciences. The International J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.




MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES), Vol. 4, 2019


Book Description

The mathematical combinatorics is a subject that applying combinatorial notions to all mathematics and all sciences for understanding the reality of things in the universe, motivated by CC Conjecture of Dr. Linfan MAO on mathematical sciences. The International J. Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.




International Journal of Mathematical Combinatorics, Volume 4, 2017


Book Description

Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics.




MATHEMATICAL COMBINATORICS, Vol.1 / 2019


Book Description

The Mathematical Combinatorics (International Book Series) is a fully refereed international book series with ISBN number on each issue, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 110-160 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences.




International Journal of Mathematical Combinatorics, Volume 1, 2019


Book Description

International J. Mathematical Combinatorics is a fully refereed international journal. Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics; Mathematical theory on gravitational fields; Mathematical theory on parallel universes; Other applications of Smarandache multi-space and combinatorics.




Analysis, Geometry and Topology of Elliptic Operators


Book Description

Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics.The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski's work in the theory of elliptic operators.