Hilbert, Göttingen and the Development of Modern Mathematics


Book Description

David Hilbert is one of the outstanding mathematicians of the twentieth century and probably the most influential. This book highlights Hilbert’s contributions to mathematics, putting them in their historical, social and cultural context. In doing so, particular attention is paid to Hilbert’s axiomatic method and his proposal for the foundations of mathematics, the so-called Hilbert’s program. The book also discusses the development of algebraic number theory, the theory of integral equations, modern algebra and the structural image of mathematics. In addition, it considers the famous list of Mathematical Problems presented in Paris in 1900, the mathematical tradition of the University of Göttingen, the great debate on the foundations of mathematics in the twenties between formalists and intuitionists, and, finally, Hilbert’s work on the theory of relativity and the foundations of quantum mechanics. The book will primarily appeal to an academic audience, although it will also be of interest to general-interest science readers.




A Richer Picture of Mathematics


Book Description

Historian David E. Rowe captures the rich tapestry of mathematical creativity in this collection of essays from the “Years Ago” column of The Mathematical Intelligencer. With topics ranging from ancient Greek mathematics to modern relativistic cosmology, this collection conveys the impetus and spirit of Rowe’s various and many-faceted contributions to the history of mathematics. Centered on the Göttingen mathematical tradition, these stories illuminate important facets of mathematical activity often overlooked in other accounts. Six sections place the essays in chronological and thematic order, beginning with new introductions that contextualize each section. The essays that follow recount episodes relating to the section’s overall theme. All of the essays in this collection, with the exception of two, appeared over the course of more than 30 years in The Mathematical Intelligencer. Based largely on archival and primary sources, these vignettes offer unusual insights into behind-the-scenes events. Taken together, they aim to show how Göttingen managed to attract an extraordinary array of talented individuals, several of whom contributed to the development of a new mathematical culture during the first decades of the twentieth century.




Development Of Mathematics Between The World Wars, The: Case Studies, Examples And Analyses


Book Description

The Development of Mathematics Between the World Wars traces the transformation of scientific life within mathematical communities during the interwar period in Central and Eastern Europe, specifically in Germany, Russia, Poland, Hungary, and Czechoslovakia. Throughout the book, in-depth mathematical analyses and examples are included for the benefit of the reader.World War I heavily affected academic life. In European countries, many talented researchers and students were killed in action and scientific activities were halted to resume only in the postwar years. However, this inhibition turned out to be a catalyst for the birth of a new generation of mathematicians, for the emergence of new ideas and theories and for the surprising creation of new and outstanding scientific schools.The final four chapters are not restricted to Central and Eastern Europe and deal with the development of mathematics between World War I and World War II. After describing the general state of mathematics at the end of the 19th century and the first third of the 20th century, three case studies dealing with selected mathematical disciplines are presented (set theory, potential theory, combinatorics), in a way accessible to a broad audience of mathematicians as well as historians of mathematics.




The Foundations of Geometry


Book Description

This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.







Establishing Quantum Physics in Göttingen


Book Description

Quantum mechanics – the grandiose theory that describes nature down to the submicroscopic level – was first formulated in Göttingen in 1925. How did this come about and why is it that Göttingen became the pre-eminent location for a revolution in physics? This book is the first to investigate the wide range of factors that were pivotal for quantum physics to be established in Göttingen. These include the process of generational change of physics professors, the hopes of mathematicians seeking new fields of research, and a new understanding of the interplay of experiment, theory and philosophy. The other books in the four-volume collection address the beginnings of quantum physics research at Copenhagen, Berlin, and Munich. These works emerged from an expansive study on the quantum revolution as a major transformation of physical knowledge undertaken by the Max Planck Institute for the History of Science and the Fritz Haber Institute (2006–2012). For more on this project, see the dedicated Feature Story, The Networks of Early Quantum Theory, at the Max Planck Institute for the History of Science, https://www.mpiwg-berlin.mpg.de/feature-story/networks-early-quantum-theory.




Modern Mathematics, Updated Edition


Book Description

Praise for the previous edition: “…ample information for reports.”—School Library Journal During the first half of the 20th century, mathematics became an international discipline that led to major advances in science and technology. Modern Mathematics, Updated Edition provides an eye-opening introduction to those five historic decades by analyzing the advancement of the field through the accomplishments of 10 significant mathematicians. From David Hilbert and Emmy Noether, who introduced the infinite dimensional vector spaces and algebraic rings that bear their names, to Norbert Wiener, the founder of cybernetics, this in-depth title covers the early 20th-century advancements that expanded the field of mathematics and transformed the way that mathematicians do their work. This edition is ideal for middle and high school students seeking resources for research or general interest.




The Emergence of the American Mathematical Research Community, 1876-1900


Book Description

Cover -- Title page -- Contents -- Preface -- Acknowledgments -- Photograph and Figure Credits -- Chapter 1. An overview of American mathematics: 1776-1876 -- Chapter 2. A new departmental prototype: J.J. Sylvester and the Johns Hopkins University -- Chapter 3. Mathematics at Sylvester's Hopkins -- Chapter 4. German mathematics and the early mathematical career of Felix Klein -- Chapter 5. America's wanderlust generation -- Chapter 6. Changes on the horizon -- Chapter 7. The World's Columbian exposition of 1893 and the Chicago mathematical congress -- Chapter 8. Surveying mathematical landscapes: The Evanston colloquium lectures -- Chapter 9. Meeting the challenge: The University of Chicago and the American mathematical research community -- Chapter 10. Epilogue: Beyond the threshold: The American mathematical research community, 1900-1933 -- Bibliography -- Subject Index -- Back Cover




History and Philosophy of Modern Mathematics


Book Description

History and Philosophy of Modern Mathematics was first published in 1988. Minnesota Archive Editions uses digital technology to make long-unavailable books once again accessible, and are published unaltered from the original University of Minnesota Press editions. The fourteen essays in this volume build on the pioneering effort of Garrett Birkhoff, professor of mathematics at Harvard University, who in 1974 organized a conference of mathematicians and historians of modern mathematics to examine how the two disciplines approach the history of mathematics. In History and Philosophy of Modern Mathematics, William Aspray and Philip Kitcher bring together distinguished scholars from mathematics, history, and philosophy to assess the current state of the field. Their essays, which grow out of a 1985 conference at the University of Minnesota, develop the basic premise that mathematical thought needs to be studied from an interdisciplinary perspective. The opening essays study issues arising within logic and the foundations of mathematics, a traditional area of interest to historians and philosophers. The second section examines issues in the history of mathematics within the framework of established historical periods and questions. Next come case studies that illustrate the power of an interdisciplinary approach to the study of mathematics. The collection closes with a look at mathematics from a sociohistorical perspective, including the way institutions affect what constitutes mathematical knowledge.




Circles Disturbed


Book Description

Why narrative is essential to mathematics Circles Disturbed brings together important thinkers in mathematics, history, and philosophy to explore the relationship between mathematics and narrative. The book's title recalls the last words of the great Greek mathematician Archimedes before he was slain by a Roman soldier—"Don't disturb my circles"—words that seem to refer to two radically different concerns: that of the practical person living in the concrete world of reality, and that of the theoretician lost in a world of abstraction. Stories and theorems are, in a sense, the natural languages of these two worlds—stories representing the way we act and interact, and theorems giving us pure thought, distilled from the hustle and bustle of reality. Yet, though the voices of stories and theorems seem totally different, they share profound connections and similarities. A book unlike any other, Circles Disturbed delves into topics such as the way in which historical and biographical narratives shape our understanding of mathematics and mathematicians, the development of "myths of origins" in mathematics, the structure and importance of mathematical dreams, the role of storytelling in the formation of mathematical intuitions, the ways mathematics helps us organize the way we think about narrative structure, and much more. In addition to the editors, the contributors are Amir Alexander, David Corfield, Peter Galison, Timothy Gowers, Michael Harris, David Herman, Federica La Nave, G.E.R. Lloyd, Uri Margolin, Colin McLarty, Jan Christoph Meister, Arkady Plotnitsky, and Bernard Teissier.