Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics


Book Description

This book gives a comprehensive introduction to modern quantum mechanics, emphasising the underlying Hilbert space theory and generalised function theory. All the major modern techniques and approaches used in quantum mechanics are introduced, such as Berry phase, coherent and squeezed states, quantum computing, solitons and quantum mechanics. Audience: The book is suitable for graduate students in physics and mathematics.




Parametric Lie Group Actions on Global Generalised Solutions of Nonlinear PDEs


Book Description

This book presents global actions of arbitrary Lie groups on large classes of generalised functions by using a novel parametric approach. This new method extends and completes earlier results of the author and collaborators, in which global Lie group actions on generalised functions were only defined in the case of projectable or fibre-preserving Lie group actions. The parametric method opens the possibility of dealing with vastly larger classes of Lie semigroup actions which still transform solutions into solutions. These Lie semigroups can contain arbitrary noninvertible smooth mappings. Thus, they cannot be subsemigroups of Lie groups. Audience: This volume is addressed to graduate students and researchers involved in solving linear and nonlinear partial differential equations, and in particular, in dealing with the Lie group symmetries of their classical or generalised solutions.




Problems And Solutions In Banach Spaces, Hilbert Spaces, Fourier Transform, Wavelets, Generalized Functions And Quantum Mechanics


Book Description

This book presents a collection of problems and solutions in functional analysis with applications to quantum mechanics. Emphasis is given to Banach spaces, Hilbert spaces and generalized functions.The material of this volume is self-contained, whereby each chapter comprises an introduction with the relevant notations, definitions, and theorems. The approach in this volume is to provide students with instructive problems along with problem-solving strategies. Programming problems with solutions are also included.




Advanced Integration Theory


Book Description

Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book "C. Constantinescu and K. Weber (in collaboration with A.




Elimination Methods in Polynomial Computer Algebra


Book Description

The subject of this book is connected with a new direction in mathematics, which has been actively developed over the last few years, namely the field of polynomial computer algebra, which lies at the intersection point of algebra, mathematical analysis and programming. There were several incentives to write the book. First of all, there has lately been a considerable interest in applied nonlinear problems characterized by multiple sta tionary states. Practical needs have then in their turn led to the appearance of new theoretical results in the analysis of systems of nonlinear algebraic equations. And finally, the introduction of various computer packages for analytic manipulations has made it possible to use complicated elimination-theoretical algorithms in prac tical research. The structure of the book is accordingly represented by three main parts: Mathematical results driven to constructive algorithms, computer algebra realizations of these algorithms, and applications. Nonlinear systems of algebraic equations arise in diverse fields of science. In particular, for processes described by systems of differential equations with a poly nomial right hand side one is faced with the problem of determining the number (and location) of the stationary states in certain sets.




Introduction to Vertex Operator Superalgebras and Their Modules


Book Description

This book presents a systematic study on the structures of vertex operator superalgebras and their modules. Related theories of self-dual codes and lattices are included, as well as recent achievements on classifications of certain simple vertex operator superalgebras and their irreducible twisted modules, constructions of simple vertex operator superalgebras from graded associative algebras and their anti-involutions, self-dual codes and lattices. Audience: This book is of interest to researchers and graduate students in mathematics and mathematical physics.




Superanalysis


Book Description

defined as elements of Grassmann algebra (an algebra with anticom muting generators). The derivatives of these elements with respect to anticommuting generators were defined according to algebraic laws, and nothing like Newton's analysis arose when Martin's approach was used. Later, during the next twenty years, the algebraic apparatus de veloped by Martin was used in all mathematical works. We must point out here the considerable contribution made by F. A. Berezin, G 1. Kac, D. A. Leites, B. Kostant. In their works, they constructed a new division of mathematics which can naturally be called an algebraic superanalysis. Following the example of physicists, researchers called the investigations carried out with the use of commuting and anticom muting coordinates supermathematics; all mathematical objects that appeared in supermathematics were called superobjects, although, of course, there is nothing "super" in supermathematics. However, despite the great achievements in algebraic superanaly sis, this formalism could not be regarded as a generalization to the case of commuting and anticommuting variables from the ordinary Newton analysis. What is more, Schwinger's formalism was still used in practically all physical works, on an intuitive level, and physicists regarded functions of anticommuting variables as "real functions" == maps of sets and not as elements of Grassmann algebras. In 1974, Salam and Strathdee proposed a very apt name for a set of super points. They called this set a superspace.




Matrix Calculus, Kronecker Product And Tensor Product: A Practical Approach To Linear Algebra, Multilinear Algebra And Tensor Calculus With Software Implementations (Third Edition)


Book Description

Our self-contained volume provides an accessible introduction to linear and multilinear algebra as well as tensor calculus. Besides the standard techniques for linear algebra, multilinear algebra and tensor calculus, many advanced topics are included where emphasis is placed on the Kronecker product and tensor product. The Kronecker product has widespread applications in signal processing, discrete wavelets, statistical physics, Hopf algebra, Yang-Baxter relations, computer graphics, fractals, quantum mechanics, quantum computing, entanglement, teleportation and partial trace. All these fields are covered comprehensively.The volume contains many detailed worked-out examples. Each chapter includes useful exercises and supplementary problems. In the last chapter, software implementations are provided for different concepts. The volume is well suited for pure and applied mathematicians as well as theoretical physicists and engineers.New topics added to the third edition are: mutually unbiased bases, Cayley transform, spectral theorem, nonnormal matrices, Gâteaux derivatives and matrices, trace and partial trace, spin coherent states, Clebsch-Gordan series, entanglement, hyperdeterminant, tensor eigenvalue problem, Carleman matrix and Bell matrix, tensor fields and Ricci tensors, and software implementations.




Global Analysis in Linear Differential Equations


Book Description

Since the initiative works for global analysis of linear differential equations by G.G. Stokes and B. Riemann in 1857, the Airy function and the Gauss hypergeometric function became the most important and the greatest practical special functions, which have a variety of applications to mathematical science, physics and engineering. The cffcctivity of these functions is essentially due to their "behavior in the large" . For instance, the Airy function plays a basic role in the asymptotic analysis of many functions arising as solutions of differential equations in several problems of applied math ematics. In case of the employment of its behavior, one should always pay attention to the Stokes phenomenon. On the other hand, as is well-known, the Gauss hypergeometric function arises in all fields of mathematics, e.g., in number theory, in the theory of groups and in analysis itself. It is not too much to say that all power series are special or extended cases of the hypergeometric series. For the full use of its properties, one needs connection formulas or contiguous relations.




Quantum Mechanics For Engineers And Material Scientists: An Introduction


Book Description

This introductory book is aimed at students of engineering and material science who want to learn the necessary toolboxes of practical quantum mechanics. The authors have made sure that all the calculations are complete, and they have avoided the usage of the familiar phrase, 'it can be easily shown' while being mathematically rigorous. Knowledge of the sophomore level introduction to ordinary differential equations is all that is needed. Well-designed and modern examples help the reader grasp and digest the concept before moving to the next one. The book offers a lucid exposition to the modern field of quantum computing and quantum gates, two-level systems, orbitals, spin, periodic solids, tunneling, and Fermi golden rule. The basics of electronic and optical properties of nanomaterials using the basics of quantum mechanics are presented without the reader getting lost in research articles with different notations and units.There are numerous examples in the book covering topics such as carbon nanotubes, graphene, superconducting qubits, principle of scanning tunneling microscopy, heterostructure based terahertz generation and negative differential resistance device, quantized LC circuit, Grover's search algorithm, phase kickback, quantum dots, well, nanowires, quantum of conductance, ballistic conductor, spin-orbit coupling, and spin transistor. Authors use analogies based on familiar engineering concepts wherever possible to broaden the view of the reader. The philosophy behind the book is teaching by showing how it is done and using 'pictures' which is worth 1000 words.