Artificial Intelligence in Digital Pathology Image Analysis


Book Description

Thanks to the development and deployment of whole-slide imaging technology in pathology, glass slides previously observed under a traditional microscope are now scanned and converted to digital images, which are more beneficial for remote access, portability, and ease of sharing to facilitate telepathology. More importantly, digitization of glass slides paves the way towards the wide use of artificial intelligence (AI) tools including machine/deep learning algorithms, resulting in improved diagnostic accuracy. In the past decade, a large number of studies have demonstrated the remarkable success of AI, particularly deep learning, in digital pathology, such as tumor region identification, metastasis detection, and patient prognosis. Differing from handcrafted feature-based approaches that take advantage of domain knowledge to delineate specific morphological measurements (e.g., nuclei shape and size and tissue texture) in the images as features for training, deep learning is a paradigm of feature learning entirely driven by the image data and/or labels. Herein, the use of deep learning in pathological diagnosis can not only handle increased workloads and expertise shortages but also obviate subjective diagnosis from pathologists. Yet there remain many scientific and technological challenges associated with the efficiency of deep learning algorithms for use in clinical practice. For example, deep learning requires a sufficient amount of training data for generalization and suffers from a lack of feature interpretability. The overarching goal of this special issue is to highlight novel research accomplishments and directions, related to advanced AI methodology development and applications in digital pathology.




Pathological Specimens And Genomic Medicine: Emerging Issues


Book Description

Pathological Specimens and Genomic Medicine — Emerging Issues surveys various fields and medical disciplines related to the implementation of the new field of genomic medicine. The book includes sections on specimen processing, the effects of tissue fixation and storage impact on downstream molecular assays, image analysis and its role in the pathology workflow, molecular evaluation of samples, and how to present data to clinicians. The book contains examples of cases where these innovative technologies are applied in the real world, and also presents a look in to the future of the field of genomic medicine.




Biomedical Data Mining for Information Retrieval


Book Description

BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.




Medical Image Computing and Computer Assisted Intervention – MICCAI 2018


Book Description

The four-volume set LNCS 11070, 11071, 11072, and 11073 constitutes the refereed proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018, held in Granada, Spain, in September 2018. The 373 revised full papers presented were carefully reviewed and selected from 1068 submissions in a double-blind review process. The papers have been organized in the following topical sections: Part I: Image Quality and Artefacts; Image Reconstruction Methods; Machine Learning in Medical Imaging; Statistical Analysis for Medical Imaging; Image Registration Methods. Part II: Optical and Histology Applications: Optical Imaging Applications; Histology Applications; Microscopy Applications; Optical Coherence Tomography and Other Optical Imaging Applications. Cardiac, Chest and Abdominal Applications: Cardiac Imaging Applications: Colorectal, Kidney and Liver Imaging Applications; Lung Imaging Applications; Breast Imaging Applications; Other Abdominal Applications. Part III: Diffusion Tensor Imaging and Functional MRI: Diffusion Tensor Imaging; Diffusion Weighted Imaging; Functional MRI; Human Connectome. Neuroimaging and Brain Segmentation Methods: Neuroimaging; Brain Segmentation Methods. Part IV: Computer Assisted Intervention: Image Guided Interventions and Surgery; Surgical Planning, Simulation and Work Flow Analysis; Visualization and Augmented Reality. Image Segmentation Methods: General Image Segmentation Methods, Measures and Applications; Multi-Organ Segmentation; Abdominal Segmentation Methods; Cardiac Segmentation Methods; Chest, Lung and Spine Segmentation; Other Segmentation Applications.




Digital Pathology


Book Description

This book constitutes the refereed proceedings of the 15th European Congress on Digital Pathology, ECDP 2019, held in Warwick, UK in April 2019. The 21 full papers presented in this volume were carefully reviewed and selected from 30 submissions. The congress theme will be Accelerating Clinical Deployment, with a focus on computational pathology and leveraging the power of big data and artificial intelligence to bridge the gaps between research, development, and clinical uptake.




Application of Bioinformatics in Cancers


Book Description

This collection of 25 research papers comprised of 22 original articles and 3 reviews is brought together from international leaders in bioinformatics and biostatistics. The collection highlights recent computational advances that improve the ability to analyze highly complex data sets to identify factors critical to cancer biology. Novel deep learning algorithms represent an emerging and highly valuable approach for collecting, characterizing and predicting clinical outcomes data. The collection highlights several of these approaches that are likely to become the foundation of research and clinical practice in the future. In fact, many of these technologies reveal new insights about basic cancer mechanisms by integrating data sets and structures that were previously immiscible. Accordingly, the series presented here bring forward a wide range of artificial intelligence approaches and statistical methods that can be applied to imaging and genomics data sets to identify previously unrecognized features that are critical for cancer. Our hope is that these articles will serve as a foundation for future research as the field of cancer biology transitions to integrating electronic health record, imaging, genomics and other complex datasets in order to develop new strategies that improve the overall health of individual patients.




Diagnostic Biomedical Signal and Image Processing Applications With Deep Learning Methods


Book Description

Diagnostic Biomedical Signal and Image Processing Applications with Deep Learning Methods presents comprehensive research on both medical imaging and medical signals analysis. The book discusses classification, segmentation, detection, tracking and retrieval applications of non-invasive methods such as EEG, ECG, EMG, MRI, fMRI, CT and X-RAY, amongst others. These image and signal modalities include real challenges that are the main themes that medical imaging and medical signal processing researchers focus on today. The book also emphasizes removing noise and specifying dataset key properties, with each chapter containing details of one of the medical imaging or medical signal modalities. Focusing on solving real medical problems using new deep learning and CNN approaches, this book will appeal to research scholars, graduate students, faculty members, R&D engineers, and biomedical engineers who want to learn how medical signals and images play an important role in the early diagnosis and treatment of diseases. - Investigates novel concepts of deep learning for acquisition of non-invasive biomedical image and signal modalities for different disorders - Explores the implementation of novel deep learning and CNN methodologies and their impact studies that have been tested on different medical case studies - Presents end-to-end CNN architectures for automatic detection of situations where early diagnosis is important - Includes novel methodologies, datasets, design and simulation examples




Research Anthology on Bioinformatics, Genomics, and Computational Biology


Book Description

In the evolving environment of bioinformatics, genomics, and computational biology, academic scholars are facing a challenging challenge – keeping informed about the latest research trends and findings. With unprecedented advancements in sequencing technologies, computational algorithms, and machine learning, these fields have become indispensable tools for drug discovery, disease research, genome sequencing, and more. As scholars strive to decode the language of DNA, predict protein structures, and navigate the complexities of biological data analysis, the need for a comprehensive and up-to-date resource becomes paramount. The Research Anthology on Bioinformatics, Genomics, and Computational Biology is a collection of a carefully curated selection of chapters that serves as the solution to the pressing challenge of keeping pace with the dynamic advancements in these critical disciplines. This anthology is designed to address the informational gap by providing scholars with a consolidated and authoritative source that sheds light on critical issues, innovative theories, and transformative developments in the field. It acts as a single reference point, offering insights into conceptual, methodological, technical, and managerial issues while also providing a glimpse into emerging trends and future opportunities.




Proceedings of COMPSTAT'2010


Book Description

Proceedings of the 19th international symposium on computational statistics, held in Paris august 22-27, 2010.Together with 3 keynote talks, there were 14 invited sessions and more than 100 peer-reviewed contributed communications.