History of Mathematical Programming


Book Description

The historical span of mathematical programming, from its conception to its present flourishing state is remarkably short. The 1940's and 1950's were an exciting period when there was a great deal of research activity, but the growth of the field during the 1960's and 1970's worldwide already appears to be of historical interest too, because much of the progress during that time has had an important influence on present-day research. In this volume some pioneers of the field, as well as some prominent younger colleagues, have put their personal recollections in writing. The contributions bear witness to a time of impressive scientific progress, in which the rich new field of mathematical programming was detected and brought up.




Programming for Mathematicians


Book Description

Aimed at teaching mathematics students how to program using their knowledge of mathematics, the entire books emphasis is on "how to think" when programming. Three methods for constructing an algorithm or a program are used: manipulation and enrichment of existing code; use of recurrent sequences; deferral of code writing, in order to deal with one difficulty at a time. Many theorems are mathematically proved and programmed, and the text concludes with an explanation of how a compiler works and how to compile "by hand" little programs. Intended for anyone who thinks mathematically and wants to program and play with mathematics.




Applied Mathematical Programming


Book Description

Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem.




50 Years of Integer Programming 1958-2008


Book Description

In 1958, Ralph E. Gomory transformed the field of integer programming when he published a paper that described a cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In 2008, to commemorate the anniversary of this seminal paper, a special workshop celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. It contains reprints of key historical articles and written versions of survey lectures on six of the hottest topics in the field by distinguished members of the integer programming community. Useful for anyone in mathematics, computer science and operations research, this book exposes mathematical optimization, specifically integer programming and combinatorial optimization, to a broad audience.




Mathematical Programming


Book Description

This comprehensive work covers the whole field of mathematical programming, including linear programming, unconstrained and constrained nonlinear programming, nondifferentiable (or nonsmooth) optimization, integer programming, large scale systems optimization, dynamic programming, and optimization in infinite dimensions. Special emphasis is placed on unifying concepts such as point-to-set maps, saddle points and perturbations functions, duality theory and its extensions.




History of Mathematics


Book Description

History of Mathematics is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on History of Mathematics discusses: Mathematics in Egypt and Mesopotamia; History of Trigonometryto 1550; Mathematics in Japan; The Mathematization of The Physical Sciences-Differential Equations of Nature; A Short History of Dynamical Systems Theory:1885-2007; Measure Theories and Ergodicity Problems; The Number Concept and Number Systems; Operations Research and Mathematical Programming: From War to Academia - A Joint Venture; Elementary Mathematics From An Advanced Standpoint; The History and Concept of Mathematical Proof; Geometry in The 20th Century; Bourbaki: An Epiphenomenon in The History of Mathematics This volume is aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers, NGOs and GOs.




A Programmer's Introduction to Mathematics


Book Description

A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.




AMPL


Book Description




The Oxford Handbook of the History of Mathematics


Book Description

This handbook explores the history of mathematics, addressing what mathematics has been and what it has meant to practise it. 36 self-contained chapters provide a fascinating overview of 5000 years of mathematics and its key cultures for academics in mathematics, historians of science, and general historians.




Interfaces between Mathematical Practices and Mathematical Education


Book Description

This contributed volume investigates the active role of the different contexts of mathematics teaching on the evolution of the practices of mathematical concepts, with particular focus on their foundations. The book aims to deconstruct the strong and generally wide-held conviction that research in mathematics constitutes the only driving force for any progress in the development of mathematics as a field. In compelling and convincing contrast, these chapters aim to show the productive function of teaching, showcasing investigations from countries and regions throughout various eras, from Old Babylonia through the 20th Century. In so doing, they provide a critical reflection on the foundations of mathematics, as well as instigate new research questions, and explore the interfaces between teaching and research.