History of Programming Languages


Book Description

History of Programming Languages presents information pertinent to the technical aspects of the language design and creation. This book provides an understanding of the processes of language design as related to the environment in which languages are developed and the knowledge base available to the originators. Organized into 14 sections encompassing 77 chapters, this book begins with an overview of the programming techniques to use to help the system produce efficient programs. This text then discusses how to use parentheses to help the system identify identical subexpressions within an expression and thereby eliminate their duplicate calculation. Other chapters consider FORTRAN programming techniques needed to produce optimum object programs. This book discusses as well the developments leading to ALGOL 60. The final chapter presents the biography of Adin D. Falkoff. This book is a valuable resource for graduate students, practitioners, historians, statisticians, mathematicians, programmers, as well as computer scientists and specialists.




Programming Languages: History and Fundamentals


Book Description

Monograph comprising fundamental information on the history and characteristics of approximately 120 programming languages for computer usage - covers technical aspects, language structure, etc. Bibliography at the end of each chapter.




Concepts in Programming Languages


Book Description

A comprehensive undergraduate textbook covering both theory and practical design issues, with an emphasis on object-oriented languages.




Modern Programming Languages


Book Description

Typical undergraduate CS/CE majors have a practical orientation: they study computing because they like programming and are good at it. This book has strong appeal to this core student group. There is more than enough material for a semester-long course. The challenge for a course in programming language concepts is to help practical ......




Types and Programming Languages


Book Description

A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.




Introduction to the Theory of Programming Languages


Book Description

The design and implementation of programming languages, from Fortran and Cobol to Caml and Java, has been one of the key developments in the management of ever more complex computerized systems. Introduction to the Theory of Programming Languages gives the reader the means to discover the tools to think, design, and implement these languages. It proposes a unified vision of the different formalisms that permit definition of a programming language: small steps operational semantics, big steps operational semantics, and denotational semantics, emphasising that all seek to define a relation between three objects: a program, an input value, and an output value. These formalisms are illustrated by presenting the semantics of some typical features of programming languages: functions, recursivity, assignments, records, objects, ... showing that the study of programming languages does not consist of studying languages one after another, but is organized around the features that are present in these various languages. The study of these features leads to the development of evaluators, interpreters and compilers, and also type inference algorithms, for small languages.




Principles of Programming Languages


Book Description

By introducing the principles of programming languages, using the Java language as a support, Gilles Dowek provides the necessary fundamentals of this language as a first objective. It is important to realise that knowledge of a single programming language is not really enough. To be a good programmer, you should be familiar with several languages and be able to learn new ones. In order to do this, you’ll need to understand universal concepts, such as functions or cells, which exist in one form or another in all programming languages. The most effective way to understand these universal concepts is to compare two or more languages. In this book, the author has chosen Caml and C. To understand the principles of programming languages, it is also important to learn how to precisely define the meaning of a program, and tools for doing so are discussed. Finally, there is coverage of basic algorithms for lists and trees. Written for students, this book presents what all scientists and engineers should know about programming languages.




Handbook of Research on Software Quality Innovation in Interactive Systems


Book Description

The inclusion of experts in communicability in the software industry has allowed timeframes to speed up in the commercialization of new technological products worldwide. However, this constant evolution of software in the face of the hardware revolution opens up a host of new horizons to maintain and increase the quality of the interactive systems following a set of standardized norms and rules for the production of interactive software. Currently, we see some efforts towards this goal, but they are still partial solutions, incomplete, and flawed from the theoretical as well as practical points of view. If the quality of the interactive design is analyzed, it is left to professionals to generate systems that are efficient, reliable, user-friendly, and cutting-edge. The Handbook of Research on Software Quality Innovation in Interactive Systems analyzes the quality of the software applied to the interactive systems and considers the constant advances in the software industry. This book reviews the past and present of information and communication technologies with a projection towards the future, along with analyses of software, software design, phrases to use, and the purposes for software applications in interactive systems. This book is ideal for students, professors, researchers, programmers, analysists of systems, computer engineers, interactive designers, managers of software quality, and evaluators of interactive systems.




Essentials of Programming Languages, third edition


Book Description

A new edition of a textbook that provides students with a deep, working understanding of the essential concepts of programming languages, completely revised, with significant new material. This book provides students with a deep, working understanding of the essential concepts of programming languages. Most of these essentials relate to the semantics, or meaning, of program elements, and the text uses interpreters (short programs that directly analyze an abstract representation of the program text) to express the semantics of many essential language elements in a way that is both clear and executable. The approach is both analytical and hands-on. The book provides views of programming languages using widely varying levels of abstraction, maintaining a clear connection between the high-level and low-level views. Exercises are a vital part of the text and are scattered throughout; the text explains the key concepts, and the exercises explore alternative designs and other issues. The complete Scheme code for all the interpreters and analyzers in the book can be found online through The MIT Press web site. For this new edition, each chapter has been revised and many new exercises have been added. Significant additions have been made to the text, including completely new chapters on modules and continuation-passing style. Essentials of Programming Languages can be used for both graduate and undergraduate courses, and for continuing education courses for programmers.




Crafting Interpreters


Book Description

Despite using them every day, most software engineers know little about how programming languages are designed and implemented. For many, their only experience with that corner of computer science was a terrifying "compilers" class that they suffered through in undergrad and tried to blot from their memory as soon as they had scribbled their last NFA to DFA conversion on the final exam. That fearsome reputation belies a field that is rich with useful techniques and not so difficult as some of its practitioners might have you believe. A better understanding of how programming languages are built will make you a stronger software engineer and teach you concepts and data structures you'll use the rest of your coding days. You might even have fun. This book teaches you everything you need to know to implement a full-featured, efficient scripting language. You'll learn both high-level concepts around parsing and semantics and gritty details like bytecode representation and garbage collection. Your brain will light up with new ideas, and your hands will get dirty and calloused. Starting from main(), you will build a language that features rich syntax, dynamic typing, garbage collection, lexical scope, first-class functions, closures, classes, and inheritance. All packed into a few thousand lines of clean, fast code that you thoroughly understand because you wrote each one yourself.