Holographic Nondestructive Testing


Book Description

Holographic Nondestructive Testing presents a unified discussion of the principles and methods of holography and its application holographic nondestructive testing. The book discusses in detail the basic theoretical concepts, the experimental methods for recording holograms, and different specialized holographic techniques. Several kinds of holography are discussed in the beginning chapters such as continuous-wave holography, pulsed holography, and interferometric holography. Other topics covered in the book are holographic surface contouring, holographic correlation, and holographic vibration analysis. Microwave and acoustical holography are the major areas of interest in Chapters 9 and 10. The text serves as an important reference to both engineers and optical scientists.







Handbook of Holographic Interferometry


Book Description

The book presents the principles and methods of holographic interferometry - a coherent-optical measurement technique for deformation and stress analysis, for the determination of refractive-index distributions, or applied to non-destructive testing. Emphasis of the book is on the quantitative computer-aided evaluation of the holographic interferograms. Based upon wave-optics the evaluation methods, their implementation in computer-algorithms, and their applications in engineering are described.




Holographic and Speckle Interferometry


Book Description

Holographic and speckle interferometry are optical techniques which use lasers to make non-contracting field view measurements at a sensitivity of the wavelength of light on optically rough (i.e. non-mirrored) surfaces. They may be used to measure static or dynamic displacements, the shape of objects, and refractive index variations of transparent media. As such, these techniques have been applied to the solution of a wide range of problems in strain and vibrational analysis, non-destructive testing (NDT), component inspection and design analysis and fluid flow visualisation. This book provides a self-contained, unified, theoretical analysis of the basic principles and associated opto-electronic techniques (for example Electronic Speckle Pattern Interferometry). In addition, a detailed discussion of experimental design and practical application to the solution of physical problems is presented. In this new edition, the authors have taken the opportunity to include a much more coherent description of more than twenty individual case studies that are representative of the main uses to which the techniques are put. The Bibliography has also been brought up to date.




Holographic Interferometry


Book Description

Holographic Interferometry provides a valuable and up-to-date source of information in the rapidly expanding field. The eight specialists` contributions cover the principles and methods currently in use. The scope of the book has been limited to the study of opaque object and ample space has been devoted to a comprehensive treatment of the phenomena of fringe formation, with a particular emphasis on the quantitative evaluation of the holographic interference fringe patterns. The emergence of computer-aided fringe analysis and phase-shifting techniques have simplified considerably the quantative real-time measurements of object shapes and deformations. The last two chapters provide a reasonably detailedoverview of full-field holographic methods for the measurement of shapes, displacements, dervatives, difference displacements and vibrations.




Nondestructive Holographic Techniques for Structures Inspection


Book Description

The theoretical and experimental work, performed during a three year study concerned with a research investigation of nondestructive holographic techniques for structures inspection, are reviewed. Topics discussed include the following: General studies - physical environment effects; General studies - surface finish effects; General studies - develop suitable techniques for a manufacturing or maintenance environment; Specific problem investigations - maximum strain and strain patterns; Specific problem investigations - fatigue cracks; Specific problem investigations - NDT.




Field Guide to Holography


Book Description

Presents an overview of the various concepts of holography, including a theoretical foundation and descriptions of the different types of holograms, techniques used to produce them, and the most common recording materials. Written with a broad audience in mind the book provides a panorama of the field to help readers understand its concepts and methodology.




Optical Holography


Book Description

Optical Holography: Materials, Theory and Applications provides researchers the fundamentals of holography through diffraction optics and an overview of the most relevant materials and applications, ranging from computer holograms to holographic data storage. Dr. Pierre Blanche leads a team of thought leaders in academia and industry in this practical reference for researchers and engineers in the field of holography. This book presents all the information readers need in order to understand how holographic techniques can be applied to a variety of applications, the benefits of those techniques, and the materials that enable these technologies. Researchers and engineers will gain comprehensive knowledge on how to select the best holographic techniques for their needs. - Covers current applications of holographic techniques in areas such as 3D television, solar concentration, non-destructive testing and data storage - Describes holographic recording materials and their most relevant applications - Provides the fundamentals of holography and diffraction optics




Advances in Signal Processing for Nondestructive Evaluation of Materials


Book Description

Non-Destructive Evaluation (NDE) is now playing an increasing role in our modern global economy; in security sensitive industries, for instance. The complexity of the inspection task and either large or limited lot runs now require more operator-assisted or fully- automated signal processing. This book deals with both fields of expertise: NDE and signal processing. On the signal processing side, in the particular context of NDE applications, the following topics are discussed: sensor fusion, signal knowledge representation, artificial intelligence, fuzzy logic, computer vision, integration of numeric and non-numeric informations, parallel decomposition, noise processing and calibration of sensor devices as well as reliability of detection. Some hardware considerations are introduced as well, to discuss platforms on which processing is done. On the NDE side, applications include advances in holographic interferometry, microwave resonance or shearography and also on more traditional NDE techniques such as ultrasonics, infrared techniques, X-ray, computed tomography, Eddy currents. Inverse problems are also discussed. This book is required reading for those who already have some experience in one or both fields (signal processing and/or NDE).