Holomorphic Dynamics


Book Description

This book, first published in 2000, is a comprehensive introduction to holomorphic dynamics, that is the dynamics induced by the iteration of various analytic maps in complex number spaces. This has been the focus of much attention in recent years, with, for example, the discovery of the Mandelbrot set, and work on chaotic behaviour of quadratic maps. The treatment is mathematically unified, emphasizing the substantial role played by classical complex analysis in understanding holomorphic dynamics as well as giving an up-to-date coverage of the modern theory. The authors cover entire functions, Kleinian groups and polynomial automorphisms of several complex variables such as complex Henon maps, as well as the case of rational functions. The book will be welcomed by graduate students and professionals in pure mathematics and science who seek a reasonably self-contained introduction to this exciting area.




Holomorphic Dynamics


Book Description

The objective of the meeting was to have together leading specialists in the field of Holomorphic Dynamical Systems in order to present their current reseach in the field. The scope was to cover iteration theory of holomorphic mappings (i.e. rational maps), holomorphic differential equations and foliations. Many of the conferences and articles included in the volume contain open problems of current interest. The volume contains only research articles.




Holomorphic Dynamics and Renormalization


Book Description

Collects papers that reflect some of the directions of research in two closely related fields: Complex Dynamics and Renormalization in Dynamical Systems. This title contains papers that introduces the reader to this fascinating world and a related area of transcendental dynamics. It also includes open problems and computer simulations.




Holomorphic Dynamical Systems


Book Description

The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.




Holomorphic Dynamics on Hyperbolic Riemann Surfaces


Book Description

This completely revised and updated edition of the one variable part of the author's classic older book "Iteration Theory of Holomorphic Maps on Taut Manifolds" presents the theory of holomorphic dynamical systems on hyperbolic Riemann surfaces from the very beginning of the subject up to the most recent developments. It is intended both as a reference book for the experts and as an accessible gateway to this beautiful theory for Master and Ph.D. students. It also contains extensive historical notes and references for further readings.




Quasiconformal Surgery in Holomorphic Dynamics


Book Description

A comprehensive introduction to quasiconformal surgery in holomorphic dynamics. Contains a wide variety of applications and illustrations.




Progress in Holomorphic Dynamics


Book Description

In the last few decades, complex dynamical systems have received widespread public attention and emerged as one of the most active fields of mathematical research. Starting where other monographs in the subject end, Progress in Holomorphic Dynamics advances the theoretical aspects and recent results in complex dynamical systems, with particular emphasis on Siegel discs. Organized into four parts, the papers in this volume grew out of three workshops: two hosted by the Georg-August-Universität Göttingen and one at the "Mathematisches Forschungsinstitut Oberwolfach." Part I addresses linearization. The authors review Yoccoz's proof that the Brjuno condition is the optimal condition for linearizability of indifferent fixed points and offer a treatment of Perez-Marco's refinement of Yoccoz's work. Part II discusses the conditions necessary for the boundary of a Siegel disc to contain a critical point, builds upon Herman's work, and offers a survey of the state-of-the-art regarding the boundaries of Siegel discs. Part III deals with the topology of Julia sets with Siegel discs and contains a remarkable highlight: C.L. Petersen establishes the existence of Siegel discs of quadratic polynomials with a locally connected boundary. Keller, taking a different approach, explains the relations between locally connected "real Julia sets" with Siegel discs and the abstract concepts of kneading sequences and itineraries. Part IV closes the volume with four papers that review the different directions of present research in iteration theory. It includes discussions on the relations between commuting rational functions and their Julia sets, interactions between the iteration of polynomials and the iteration theory of entire transcendental functions, a deep analysis of the topology of the limbs of the Mandelbrot set, and an overview of complex dynamics in higher dimensions.




Dynamics in One Complex Variable


Book Description

This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.




Introduction to the Modern Theory of Dynamical Systems


Book Description

This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.




Dynamics in Several Complex Variables


Book Description

This CBMS lecture series, held in Albany, New York in June 1994 aimed to introduce the audience to the literature on complex dynamics in higher dimension. Some of the lectures are updated versions of earlier lectures given jointly with Nessim Sibony in Montreal 1993. the authro's intent in this book is to give an expansion of the Montreal lectures, basing complex dynamics in higher dimension systematically on pluripotential theory.