Invariant Distances and Metrics in Complex Analysis


Book Description

As in the field of "Invariant Distances and Metrics in Complex Analysis" there was and is a continuous progress this is now the second extended edition of the corresponding monograph. This comprehensive book is about the study of invariant pseudodistances (non-negative functions on pairs of points) and pseudometrics (non-negative functions on the tangent bundle) in several complex variables. It is an overview over a highly active research area at the borderline between complex analysis, functional analysis and differential geometry. New chapters are covering the Wu, Bergman and several other metrics. The book considers only domains in Cn and assumes a basic knowledge of several complex variables. It is a valuable reference work for the expert but is also accessible to readers who are knowledgeable about several complex variables. Each chapter starts with a brief summary of its contents and continues with a short introduction. It ends with an "Exercises" and a "List of problems" section that gathers all the problems from the chapter. The authors have been highly successful in giving a rigorous but readable account of the main lines of development in this area.




Hyperbolic Manifolds and Holomorphic Mappings


Book Description

The first edition of this influential book, published in 1970, opened up a completely new field of invariant metrics and hyperbolic manifolds. The large number of papers on the topics covered by the book written since its appearance led Mathematical Reviews to create two new subsections ?invariant metrics and pseudo-distances? and ?hyperbolic complex manifolds? within the section ?holomorphic mappings?. The invariant distance introduced in the first edition is now called the ?Kobayashi distance?, and the hyperbolicity in the sense of this book is called the ?Kobayashi hyperbolicity? to distinguish it from other hyperbolicities. This book continues to serve as the best introduction to hyperbolic complex analysis and geometry and is easily accessible to students since very little is assumed. The new edition adds comments on the most recent developments in the field.







Semigroups of Operators: Theory and Applications


Book Description

These Proceedings comprise the bulk of the papers presented at the Inter national Conference on Semigroups of Opemtors: Theory and Contro~ held 14-18 December 1998, Newport Beach, California, U.S.A. The intent of the Conference was to highlight recent advances in the the ory of Semigroups of Operators which provides the abstract framework for the time-domain solutions of time-invariant boundary-value/initial-value problems of partial differential equations. There is of course a firewall between the ab stract theory and the applications and one of the Conference aims was to bring together both in the hope that it may be of value to both communities. In these days when all scientific activity is judged by its value on "dot com" it is not surprising that mathematical analysis that holds no promise of an immediate commercial product-line, or even a software tool-box, is not high in research priority. We are particularly pleased therefore that the National Science Foundation provided generous financial support without which this Conference would have been impossible to organize. Our special thanks to Dr. Kishan Baheti, Program Manager.




Complex Analysis and Geometry


Book Description

Based on two conferences held in Trento, Italy, this volume contains 13 research papers and two survey papers on complex analysis and complex algebraic geometry. The main topics addressed by these leading researchers include: Mori theory polynomial hull vector bundles q-convexity Lie groups and actions on complex spaces hypercomplex structures pseudoconvex domains projective varieties Peer-reviewed and extensively referenced, Complex Analysis and Geometry contains recent advances and important research results. It also details several problems that remain open, the resolution of which could further advance the field.




Finite or Infinite Dimensional Complex Analysis


Book Description

This volume presents the proceedings of the Seventh International Colloquium on Finite or Infinite Dimensional Complex Analysis held in Fukuoka, Japan. The contributions offer multiple perspectives and numerous research examples on complex variables, Clifford algebra variables, hyperfunctions and numerical analysis.




Complex Analysis and Dynamical Systems II


Book Description

This volume is a collection of papers reflecting the conference held in Nahariya, Israel in honor of Professor Lawrence Zalcman's sixtieth birthday. The papers, many written by leading authorities, range widely over classical complex analysis of one and several variables, differential equations, and integral geometry. Topics covered include, but are not limited to, these areas within the theory of functions of one complex variable: complex dynamics, elliptic functions, Kleinian groups, quasiconformal mappings, Tauberian theorems, univalent functions, and value distribution theory. Altogether, the papers in this volume provide a comprehensive overview of activity in complex analysis at the beginning of the twenty-first century and testify to the continuing vitality of the interplay between classical and modern analysis. It is suitable for graduate students and researchers interested in computer analysis and differential geometry. Information for our distributors: This book is co-published with Bar-Ilan University.




Complex Analysis in Locally Convex Spaces


Book Description

Complex Analysis in Locally Convex Spaces




Bounded Symmetric Domains In Banach Spaces


Book Description

This timely book exposes succinctly recent advances in the geometric and analytic theory of bounded symmetric domains. A unique feature is the unified treatment of both finite and infinite dimensional symmetric domains, using Jordan theory in tandem with Lie theory. The highlights include a generalized Riemann mapping theorem, which realizes a bounded symmetric domain as the open unit ball of a complex Banach space with a Jordan structure. Far-reaching applications of this realization in complex geometry and function theory are discussed.This monograph is intended as a convenient reference for researchers and graduate students in geometric analysis, infinite dimensional holomorphy as well as functional analysis and operator theory.