Handbook of Algebraic Topology


Book Description

Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.




Cohomological Methods in Homotopy Theory


Book Description

This book contains a collection of articles summarizing the state of knowledge in a large portion of modern homotopy theory. A call for articles was made on the occasion of an emphasis semester organized by the Centre de Recerca Matemtica in Bellaterra (Barcelona) in 1998. The main topics treated in the book include abstract features of stable and unstable homotopy, homotopical localizations, p-compact groups, H-spaces, classifying spaces for proper actions, cohomology of discrete groups, K-theory and other generalized cohomology theories, configuration spaces, and Lusternik-Schnirelmann category. The book is addressed to all mathematicians interested in homotopy theory and in geometric aspects of group theory. New research directions in topology are highlighted. Moreover, this informative and educational book serves as a welcome reference for many new results and recent methods.




Lusternik-Schnirelmann Category


Book Description

''Lusternik-Schnirelmann category is like a Picasso painting. Looking at category from different perspectives produces completely different impressions of category's beauty and applicability.'' --from the Introduction Lusternik-Schnirelmann category is a subject with ties to both algebraic topology and dynamical systems. The authors take LS-category as the central theme, and then develop topics in topology and dynamics around it. Included are exercises and many examples. The book presents the material in a rich, expository style. The book provides a unified approach to LS-category, including foundational material on homotopy theoretic aspects, the Lusternik-Schnirelmann theorem on critical points, and more advanced topics such as Hopf invariants, the construction of functions with few critical points, connections with symplectic geometry, the complexity of algorithms, and category of $3$-manifolds. This is the first book to synthesize these topics. It takes readers from the very basics of the subject to the state of the art. Prerequisites are few: two semesters of algebraic topology and, perhaps, differential topology. It is suitable for graduate students and researchers interested