Hot Isostatic Pressing— Theory and Applications


Book Description

The HIP process was originally devised for diffusion bonding of nuclear fuel elements at Battelle Memorial Institute in the United States in the mid-1950s. This innovative technique has been a subject of global research and development, and was applied to the cemented carbide industry at the end of the 1960s by ASEAj Sandvik. Since then this process has been applied to many kinds of industrial materials, including tool steel, superalloys and electronic and ceramic materials. In very recent years, HIPing technology has been applied even to R& D of high temperature superconducting materials and of a composite process with self combustion reaction. On this occasion we should recognize that the 3rd HIP Conference was held in the midst of such progress of HIP technology, and that it was the first international conference which was held in Asia in the field of HIP and CIP technologies. The conference was very successful, with about 250 participants from 13 countries, including Japan. About 90 presentations, including nine invited lecturers, 44 oral and 35 poster presentations, were offered, and all contributions were at a high level and contained valuable results which had been attained in recent years.




Hot Isostatic Processing


Book Description

The aim of this book is to provide an introduction to the increasingly exploited technology of Hot Isostatic Pressing (HIPping). It is intended for two audiences. Firstly, the manufacturing or design engineer who may not have a materials science background, but who needs to develop an appreciation of the scope of the HIPping process. Secondly, the engineering or materials undergraduate who needs to understand how HIPping as a modern manufacturing method can offer potential improvements to material properties relative to more conventional techniques.




Isostatic Pressing


Book Description

This updated volume is intended as a reference text on the technology of hot and cold isostatic pressing together with applications for development of new materials.




Hot Isostatic Pressing '93


Book Description

Various topics related to Hot Isostatic Pressing are presented in this volume. As well as papers on more general aspects of HIPing, the papers are organised into four groups: metals and alloys, ceramics, HIP-engineering, and HIP-fundamentals. Castings, powder metallurgy, intermetallics, surface engineering and diffusion bounding are covered in the first group. The papers on ceramics give special attention to HIPing of structural and functional ceramics as well as to ceramic composites. Some interesting HIP-engineering innovations are presented on HIP equipment and HIP-technology. The papers which discuss HIP-fundamentals focus around materials modelling and component modelling.




Modeling and Optimization in Manufacturing


Book Description

Discover the state-of-the-art in multiscale modeling and optimization in manufacturing from two leading voices in the field Modeling and Optimization in Manufacturing delivers a comprehensive approach to various manufacturing processes and shows readers how multiscale modeling and optimization processes help improve upon them. The book elaborates on the foundations and applications of computational modeling and optimization processes, as well as recent developments in the field. It offers discussions of manufacturing processes, including forming, machining, casting, joining, coating, and additive manufacturing, and how computer simulations have influenced their development. Examples for each category of manufacturing are provided in the text, and industrial applications are described for the reader. The distinguished authors also provide an insightful perspective on likely future trends and developments in manufacturing modeling and optimization, including the use of large materials databases and machine learning. Readers will also benefit from the inclusion of: A thorough introduction to the origins of manufacturing, the history of traditional and advanced manufacturing, and recent progress in manufacturing An exploration of advanced manufacturing and the environmental impact and significance of manufacturing Practical discussions of the economic importance of advanced manufacturing An examination of the sustainability of advanced manufacturing, and developing and future trends in manufacturing Perfect for materials scientists, mechanical engineers, and process engineers, Modeling and Optimization in Manufacturing will also earn a place in the libraries of engineering scientists in industries seeking a one-stop reference on multiscale modeling and optimization in manufacturing.




Advances in Ceramic Matrix Composites


Book Description

Advances in Ceramic Matrix Composites, Second Edition, delivers an innovative approach to ceramic matrix composites, focusing on the latest advances and materials developments. As advanced ceramics and composite materials are increasingly utilized as components in batteries, fuel cells, sensors, high-temperature electronics, membranes and high-end biomedical devices, and in seals, valves, implants, and high-temperature and wear components, this book explores the substantial progress in new applications. Users will gain knowledge of the latest advances in CMCs, with an update on the role of ceramics in the fabrication of Solid Oxide Fuel Cells for energy generation, and on natural fiber-reinforced eco-friendly geopolymer and cement composites. The specialized information contained in this book will be highly valuable to researchers and graduate students in ceramic science, engineering and ceramic composites technology, and engineers and scientists in the aerospace, energy, building and construction, biomedical and automotive industries. Provides detailed coverage of parts and processing, properties and applications Includes new developments in the field, such as natural fiber-reinforced composites and the use of CMCs in Solid Oxide Fuel Cells (SOFCs) Presents state-of-the-art research, enabling the reader to understand the latest applications for CMCs




Handbook of Metal Injection Molding


Book Description

Metal injection molding combines the most useful characteristics of powder metallurgy and plastic injection molding to facilitate the production of small, complex-shaped metal components with outstanding mechanical properties. Handbook of Metal Injection Molding, Second Edition provides an authoritative guide to this important technology and its applications. Building upon the success of the first edition, this new edition includes the latest developments in the field and expands upon specific processing technologies. Part one discusses the fundamentals of the metal injection molding process with chapters on topics such as component design, important powder characteristics, compound manufacture, tooling design, molding optimization, debinding, and sintering. Part two provides a detailed review of quality issues, including feedstock characterisation, modeling and simulation, methods to qualify a MIM process, common defects and carbon content control. Special metal injection molding processes are the focus of part three, which provides comprehensive coverage of micro components, two material/two color structures, and porous metal techniques, as well as automation of the MIM process and metal injection molding of large components. Finally, part four explores metal injection molding of particular materials, and has been expanded to include super alloys, carbon steels, precious metals, and aluminum. With its distinguished editor and expert team of international contributors, the Handbook of Metal Injection Molding is an essential guide for all those involved in the high-volume manufacture of small precision parts, across a wide range of high-tech industries such as microelectronics, biomedical and aerospace engineering. Provides an authoritative guide to metal injection molding and its applications Discusses the fundamentals of the metal injection molding processes and covers topics such as component design, important powder characteristics, compound manufacture, tooling design, molding optimization, debinding, and sintering Comprehensively examines quality issues such as feedstock characterization, modeling and simulation, common defects and carbon content control




Powder Metallurgy Stainless Steels


Book Description




Fundamentals of Magnetic Thermonuclear Reactor Design


Book Description

Fundamentals of Magnetic Thermonuclear Reactor Design is a comprehensive resource on fusion technology and energy systems written by renowned scientists and engineers from the Russian nuclear industry. It brings together a wealth of invaluable experience and knowledge on controlled thermonuclear fusion (CTF) facilities with magnetic plasma confinement – from the first semi-commercial tokamak T-3, to the multi-billion international experimental thermonuclear reactor ITER, now in construction in France. As the INTOR and ITER projects have made an immense contribution in the past few decades, this book focuses on its practical engineering aspects and the basics of technical physics and electrical engineering. Users will gain an understanding of the key ratios between plasma and technical parameters, design streamlining algorithms and engineering solutions. Written by a team of qualified experts who have been involved in the design of thermonuclear reactors for over 50 years Outlines the most important features of the ITER project in France which is building the largest tokamak, including the design, material selection, safety and economic considerations Includes data on how to design magnetic fusion reactors using CAD tools, along with relevant regulatory documents




Gas-pressure Bonding


Book Description