How Fuzzy Concepts Contribute to Machine Learning


Book Description

This book introduces some contemporary approaches on the application of fuzzy and hesitant fuzzy sets in machine learning tasks such as classification, clustering and dimension reduction. Many situations arise in machine learning algorithms in which applying methods for uncertainty modeling and multi-criteria decision making can lead to a better understanding of algorithms behavior as well as achieving good performances. Specifically, the present book is a collection of novel viewpoints on how fuzzy and hesitant fuzzy concepts can be applied to data uncertainty modeling as well as being used to solve multi-criteria decision making challenges raised in machine learning problems. Using the multi-criteria decision making framework, the book shows how different algorithms, rather than human experts, are employed to determine membership degrees. The book is expected to bring closer the communities of pure mathematicians of fuzzy sets and data scientists.




Dynamic Fuzzy Machine Learning


Book Description

Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning.




Fuzzy Logic in Artificial Intelligence


Book Description

This volume contains the proceedings of the Eighth Austrian Artificial Intelligence Conference, held in Linz, Austria, in June 1993. The focus of the conference was on "Fuzzy Logic in Artificial Intelligence". The volume contains abstracts of two invited talks and full versions of 17 carefully selected papers. The invited talks were: "The role of fuzzylogic and soft computing in the conception and design of intelligent systems" by Lotfi A. Zadeh, and "A contextual approach for AI systems development" by Irina V. Ezhkova. The contributed papers are grouped into sections on theoretical issues, machine learning, expert systems, robotics and control, applications to medicine, and applications to car driving. Additionally, the volume contains descriptions of the four workshops that took place during the conference.




Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications


Book Description

In today’s real-world applications, there is an increasing demand of integrating new information and knowledge on-demand into model building processes to account for changing system dynamics, new operating conditions, varying human behaviors or environmental influences. Evolving fuzzy systems (EFS) are a powerful tool to cope with this requirement, as they are able to automatically adapt parameters, expand their structure and extend their memory on-the-fly, allowing on-line/real-time modeling. This book comprises several evolving fuzzy systems approaches which have emerged during the last decade and highlights the most important incremental learning methods used. The second part is dedicated to advanced concepts for increasing performance, robustness, process-safety and reliability, for enhancing user-friendliness and enlarging the field of applicability of EFS and for improving the interpretability and understandability of the evolved models. The third part underlines the usefulness and necessity of evolving fuzzy systems in several online real-world application scenarios, provides an outline of potential future applications and raises open problems and new challenges for the next generation evolving systems, including human-inspired evolving machines. The book includes basic principles, concepts, algorithms and theoretic results underlined by illustrations. It is dedicated to researchers from the field of fuzzy systems, machine learning, data mining and system identification as well as engineers and technicians who apply data-driven modeling techniques in real-world systems.




Era of Artificial Intelligence


Book Description

This text has attempted to collate quality research articles ranging from A Mathematical Disposition for Neural Nets, to Cognitive Computing, to Quantum Machine Learning, to a Multimodal Emotion Recognition System, to Responsible AI, to AI for Accessibility and Inclusion, to Artificial-Enabled Intelligence Enabled Applications in the sectors of Health, Pharma and Education. Features Focus on AI research and interdisciplinary research that exhibits AI inclusion to a greater degree Focus on application of disruptive technology in the context of the twenty-first century human and machine approach Focus on role of disruptive technology such as cognitive computing, quantum machine learning, IOT enabled-recognition systems Focus on unravelling the powerful features of artificial intelligence for societal benefits including accessibility This volume will cater as a ready reference to an individual’s quest for deep diving into the ocean of artificial intelligence-enabled solution approaches. The book will serve as a useful reference for researchers, innovators, academicians, entrepreneurs, and professionals aspiring to gain expertise in the domain of cognitive and quantum computing, IOT-enabled intelligent systems and so on.




Encyclopedia of Data Science and Machine Learning


Book Description

Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.




Introduction to Machine Learning and Bioinformatics


Book Description

Lucidly Integrates Current Activities Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other. Examines Connections between Machine Learning & Bioinformatics The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website. Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today’s biological experiments.




Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigm


Book Description

Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigms, Forecasting Energy for Tomorrow's World with Mathematical Modeling and Python Programming Driven Artificial Intelligence delivers knowledge on key infrastructure topics in both AI technology and energy. Sections lay the groundwork for tomorrow's computing functionality, starting with how to build a Business Resilience System (BRS), data warehousing, data management, and fuzzy logic. Subsequent chapters dive into the impact of energy on economic development and the environment and mathematical modeling, including energy forecasting and engineering statistics. Energy examples are included for application and learning opportunities. A final section deliver the most advanced content on artificial intelligence with the integration of machine learning and deep learning as a tool to forecast and make energy predictions. The reference covers many introductory programming tools, such as Python, Scikit, TensorFlow and Kera. - Helps users gain fundamental knowledge in technology infrastructure, including AI, machine learning and fuzzy logic - Compartmentalizes data knowledge into near-term and long-term forecasting models, with examples involving both renewable and non-renewable energy outcomes - Advances climate resiliency and helps readers build a business resiliency system for assets




Advanced Machine Learning


Book Description

DESCRIPTION Our book is divided into several useful concepts and techniques of machine learning. This book serves as a valuable resource for individuals seeking to deepen their understanding of advanced topics in this field. Learn about various learning algorithms, including supervised, unsupervised, and reinforcement learning, and their mathematical foundations. Discover the significance of feature engineering and selection for enhancing model performance. Understand model evaluation metrics like accuracy, precision, recall, and F1-score, along with techniques like cross-validation and grid search for model selection. Explore ensemble learning methods along with deep learning, unsupervised learning, time series analysis, and reinforcement learning techniques. Lastly, uncover real-world applications of the machine and deep learning algorithms. After reading this book, readers will gain a comprehensive understanding of machine learning fundamentals and advanced techniques. With this knowledge, readers will be equipped to tackle real-world problems, make informed decisions, and develop innovative solutions using machine and deep learning algorithms. KEY FEATURES ● Basic understanding of machine learning algorithms via MATLAB, R, and Python. ● Inclusion of examples related to real-world problems, case studies, and questions related to futuristic technologies. ● Adding futuristic technologies related to machine learning and deep learning. WHAT YOU WILL LEARN ● Ability to tackle complex machine learning problems. ● Understanding of foundations, algorithms, ethical issues, and how to implement each learning algorithm for their own use/ with their data. ● Efficient data analysis for real-time data will be understood by researchers/ students. ● Using data analysis in near future topics and cutting-edge technologies. WHO THIS BOOK IS FOR This book is ideal for students, professors, and researchers. It equips industry experts and academics with the technical know-how and practical implementations of machine learning algorithms. TABLE OF CONTENTS 1. Introduction to Machine Learning 2. Statistical Analysis 3. Linear Regression 4. Logistic Regression 5. Decision Trees 6. Random Forest 7. Rule-Based Classifiers 8. Naïve Bayesian Classifier 9. K-Nearest Neighbors Classifiers 10. Support Vector Machine 11. K-Means Clustering 12. Dimensionality Reduction 13. Association Rules Mining and FP Growth 14. Reinforcement Learning 15. Applications of ML Algorithms 16. Applications of Deep Learning 17. Advance Topics and Future Directions




Computational Intelligent Techniques in Mechatronics


Book Description

This book, set against the backdrop of huge advancements in artificial intelligence and machine learning within mechatronic systems, serves as a comprehensive guide to navigating the intricacies of mechatronics and harnessing its transformative potential. Mechatronics has been a revolutionary force in engineering and medical robotics over the past decade. It will lead to a major industrial revolution and affect research in every field of engineering. This book covers the basics of mechatronics, computational intelligence approaches, simulation and modeling concepts, architectures, nanotechnology, real-time monitoring and control, different actuators, and sensors. The book explains clearly and comprehensively the engineering design process at different stages. As the historical divisions between the various branches of engineering and computer science become less clearly defined, mechatronics may provide a roadmap for nontraditional engineering students studying within the traditional university structure. This book covers all the algorithms and techniques found in mechatronics engineering, well explained with real-time examples, especially lab experiments that will be very informative to students and scholars. Audience This resource is important for R & D departments in academia, government, and industry. It will appeal to mechanical engineers, electronics engineers, computer scientists, robotics engineers, professionals in manufacturing, automation and related industries, as well as innovators and entrepreneurs.