How Life Emerges from Inanimate Matter


Book Description

This book describes how the phenomenon of life emerges gradually from the elements of inanimate matter. It shows that, first, this transition occurs in space, when we move from elementary particles and atoms, through molecules and their complexes, cells, tissues and organs to entire individuals. Second, this transition also happened (and is still happening) in time, during biological evolution, when the first living systems originated spontaneously from organic compounds and then evolved step by step through bacteria to plants, animals and us. Third, the embryonic development from a fertilized egg to an adult individual occurs both in space and time. This book is unique as it analyzes all three processes in terms of their physical, chemical, biochemical, thermodynamic, energetic, genetic, cellular, physiological, embryological, evolutionary and cybernetic aspects.




The Limits of Organic Life in Planetary Systems


Book Description

The search for life in the solar system and beyond has to date been governed by a model based on what we know about life on Earth (terran life). Most of NASA's mission planning is focused on locations where liquid water is possible and emphasizes searches for structures that resemble cells in terran organisms. It is possible, however, that life exists that is based on chemical reactions that do not involve carbon compounds, that occurs in solvents other than water, or that involves oxidation-reduction reactions without oxygen gas. To assist NASA incorporate this possibility in its efforts to search for life, the NRC was asked to carry out a study to evaluate whether nonstandard biochemistry might support life in solar system and conceivable extrasolar environments, and to define areas to guide research in this area. This book presents an exploration of a limited set of hypothetical chemistries of life, a review of current knowledge concerning key questions or hypotheses about nonterran life, and suggestions for future research.




The Emergence of Life on Earth


Book Description

How did life emerge on Earth? Is there life on other worlds? These questions, until recently confined to the pages of speculative essays and tabloid headlines, are now the subject of legitimate scientific research. This book presents a unique perspective--a combined historical, scientific, and philosophical analysis, which does justice to the complex nature of the subject. The book's first part offers an overview of the main ideas on the origin of life as they developed from antiquity until the twentieth century. The second, more detailed part of the book examines contemporary theories and major debates within the origin-of-life scientific community. Topics include: Aristotle and the Greek atomists' conceptions of the organism Alexander Oparin and J.B.S. Haldane's 1920s breakthrough papers Possible life on Mars?




The Emergence of Life


Book Description

The origin of life from inanimate matter has been the focus of much research for decades, both experimentally and philosophically. Luisi takes the reader through the consecutive stages from prebiotic chemistry to synthetic biology, uniquely combining both approaches. This book presents a systematic course discussing the successive stages of self-organisation, emergence, self-replication, autopoiesis, synthetic compartments and construction of cellular models, in order to demonstrate the spontaneous increase in complexity from inanimate matter to the first cellular life forms. A chapter is dedicated to each of these steps, using a number of synthetic and biological examples. With end-of-chapter review questions to aid reader comprehension, this book will appeal to graduate students and academics researching the origin of life and related areas such as evolutionary biology, biochemistry, molecular biology, biophysics and natural sciences.




Every Life Is on Fire


Book Description

A preeminent physicist unveils a field-defining theory of the origins and purpose of life. Why are we alive? Most things in the universe aren't. And everything that is alive traces back to things that, puzzlingly, weren't. For centuries, the scientific question of life's origins has confounded us. But in Every Life Is on Fire, physicist Jeremy England argues that the answer has been under our noses the whole time, deep within the laws of thermodynamics. England explains how, counterintuitively, the very same forces that tend to tear things apart assembled the first living systems. But how life began isn't just a scientific question. We ask it because we want to know what it really means to be alive. So England, an ordained rabbi, uses his theory to examine how, if at all, science helps us find purpose in a vast and mysterious universe. In the tradition of Viktor Frankl's Man's Search for Meaning, Every Life Is on Fire is a profound testament to how something can come from nothing.




The Origin of Life


Book Description

This classic of biochemistry offered the first detailed exposition of the theory that living tissue was preceded upon Earth by a long and gradual evolution of nitrogen and carbon compounds. "Easily the most scholarly authority on the question...it will be a landmark for discussion for a long time to come." — New York Times.




Why Science Does Not Disprove God


Book Description

The renowned science writer, mathematician, and bestselling author of Fermat's Last Theorem masterfully refutes the overreaching claims the "New Atheists," providing millions of educated believers with a clear, engaging explanation of what science really says, how there's still much space for the Divine in the universe, and why faith in both God and empirical science are not mutually exclusive. A highly publicized coterie of scientists and thinkers, including Richard Dawkins, the late Christopher Hitchens, and Lawrence Krauss, have vehemently contended that breakthroughs in modern science have disproven the existence of God, asserting that we must accept that the creation of the universe came out of nothing, that religion is evil, that evolution fully explains the dazzling complexity of life, and more. In this much-needed book, science journalist Amir Aczel profoundly disagrees and conclusively demonstrates that science has not, as yet, provided any definitive proof refuting the existence of God. Why Science Does Not Disprove God is his brilliant and incisive analyses of the theories and findings of such titans as Albert Einstein, Roger Penrose, Alan Guth, and Charles Darwin, all of whose major breakthroughs leave open the possibility— and even the strong likelihood—of a Creator. Bolstering his argument, Aczel lucidly discourses on arcane aspects of physics to reveal how quantum theory, the anthropic principle, the fine-tuned dance of protons and quarks, the existence of anti-matter and the theory of parallel universes, also fail to disprove God.




Inanimate Life


Book Description




The Origin and Nature of Life on Earth


Book Description

Uniting the foundations of physics and biology, this groundbreaking multidisciplinary and integrative book explores life as a planetary process.




The Cosmic Zoo


Book Description

Are humans a galactic oddity, or will complex life with human abilities develop on planets with environments that remain habitable for long enough? In a clear, jargon-free style, two leading researchers in the burgeoning field of astrobiology critically examine the major evolutionary steps that led us from the distant origins of life to the technologically advanced species we are today. Are the key events that took life from simple cells to astronauts unique occurrences that would be unlikely to occur on other planets? By focusing on what life does - it's functional abilities - rather than specific biochemistry or anatomy, the authors provide plausible answers to this question. Systematically exploring the various pathways that led to the complex biosphere we experience on planet Earth, they show that most of the steps along that path are likely to occur on any world hosting life, with only two exceptions: One is the origin of life itself – if this is a highly improbable event, then we live in a rather “empty universe”. However, if this isn’t the case, we inevitably live in a universe containing a myriad of planets hosting complex as well as microbial life - a “cosmic zoo”. The other unknown is the rise of technologically advanced beings, as exemplified on Earth by humans. Only one technological species has emerged in the roughly 4 billion years life has existed on Earth, and we don’t know of any other technological species elsewhere. If technological intelligence is a rare, almost unique feature of Earth's history, then there can be no visitors to the cosmic zoo other than ourselves. Schulze-Makuch and Bains take the reader through the history of life on Earth, laying out a consistent and straightforward framework for understanding why we should think that advanced, complex life exists on planets other than Earth. They provide a unique perspective on the question that puzzled the human species for centuries: are we alone?