How the Laws of Physics Lie


Book Description

In this sequence of philosophical essays about natural science, Nancy Cartwright argues that fundamental explanatory laws, the deepest and most admired successes of modern physics, do not in fact describe the regularities that exist in nature. Yet she is not `anti-realist'. Rather, she draws a novel distinction, arguing that theoretical entities, and the complex and localized laws that describe them, can be interpreted realistically, but that the simple unifying laws of basic theory cannot.




Rethinking Order


Book Description

This book presents a radical new picture of natural order. The Newtonian idea of a cosmos ruled by universal and exceptionless laws has been superseded; replaced by a conception of nature as a realm of diverse powers, potencies, and dispositions, a 'dappled world'. There is order in nature, but it is more local, diverse, piecemeal, open, and emergent than Newton imagined. In each chapter expert authors expound the historical context of the idea of laws of nature, and explore the diverse sorts of order actually presupposed by work in physics, biology, and the social sciences. They consider how human freedom might be understood, and explore how Newton's idea of a 'universal designer' might be revised, in this new context. They argue that there is not one unified totalizing program of science, aiming at the completion of one closed causal system. We live in an ordered universe, but we need to rethink the classical idea of the 'laws of nature' in a more dynamic and creatively diverse way.




Nature, the Artful Modeler


Book Description

How fixed are the happenings in Nature and how are they fixed? These lectures address what our scientific successes at predicting and manipulating the world around us suggest in answer. One—very orthodox—account teaches that the sciences offer general truths that we combine with local facts to derive our expectations about what will happen, either naturally or when we build a device to design, be it a laser, a washing machine, an anti-malarial bed net, or an auction for the airwaves. In these three 2017 Carus Lectures Nancy Cartwright offers a different picture, one in which neither we, nor Nature, have such nice rules to go by. Getting real predictions about real happenings is an engineering enterprise that makes clever use of a great variety of different kinds of knowledge, with few real derivations in sight anywhere. It takes artful modeling. Orthodoxy would have it that how we do it is not reflective of how Nature does it. It is, rather, a consequence of human epistemic limitations. That, Cartwright argues, is to put our reasoning just back to front. We should read our image of what Nature is like from the way our sciences work when they work best in getting us around in it, non plump for a pre-set image of how Nature must work to derive what an ideal science, freed of human failings, would be like. Putting the order of inference right way around implies that like us, Nature too is an artful modeler. Lecture 1 is an exercise in description. It is a study of the practices of science when the sciences intersect with the world and, then, of what that world is most likely like given the successes of these practices. Millikan's famous oil drop experiment, and the range of knowledge pieced together to make it work, are used to illustrate that events in the world do not occur in patterns that can be properly described in so-called "laws of nature." Nevertheless, they yield to artful modeling. Without a huge leap of faith, that, it seems, is the most we can assume about the happenings in Nature. Lecture 2 is an exercise in metaphysics. How could the arrangements of happenings come to be that way? In answer, Cartwright urges an ontology in which powers act together in different ways depending on the arrangements they find themselves in to produce what happens. It is a metaphysics in which possibilia are real because powers and arrangement are permissive—they constrain but often do not dictate outcomes (as we see in contemporary quantum theory). Lecture 3, based on Cartwright's work on evidence-based policy and randomized controlled trials, is an exercise in the philosophy of social technology: How we can put our knowledge of powers and our skills at artful modeling to work to build more decent societies and how we can use our knowledge and skills to evaluate when our attempts are working. The lectures are important because: They offer an original view on the age-old question of scientific realism in which our knowledge is genuine, yet our scientific principles are neither true nor false but are, rather, templates for building good models. Powers are center-stage in metaphysics right now. Back-reading them from the successes of scientific practice, as Lecture 2 does, provides a new perspective on what they are and how they function. There is a loud call nowadays to make philosophy relevant to "real life." That's just what happens in Lecture 3, where Cartwright applies the lesson of Lectures 1 and 2 to argue for a serious rethink of the way that we are urged—and in some places mandated—to use evidence to predict the outcomes of our social policies.




The Dappled World


Book Description

It is often supposed that the spectacular successes of our modern mathematical sciences support a lofty vision of a world completely ordered by one single elegant theory. In this book Nancy Cartwright argues to the contrary. When we draw our image of the world from the way modern science works - as empiricism teaches us we should - we end up with a world where some features are precisely ordered, others are given to rough regularity and still others behave in their own diverse ways. This patchwork makes sense when we realise that laws are very special productions of nature, requiring very special arrangements for their generation. Combining classic and newly written essays on physics and economics, The Dappled World carries important philosophical consequences and offers serious lessons for both the natural and the social sciences.




Ceterus Paribus Laws


Book Description

Natural and social sciences seem very often, though usually only implicitly, to hedge their laws by ceteris paribus clauses - a practice which is philosophically very hard to understand because such clauses seem to render the laws trivial and unfalsifiable. After early worries the issue is vigorously discussed in the philosophy of science and the philosophy of mind since ca. 15 years. This volume collects the most prominent philosophers of science in the field and presents a lively, controversial, but well-integrated, highly original and up-to-date discussion of the issue. It will be the reference book in the coming years concerning ceteris paribus laws.




Beyond the God Particle


Book Description

Two leading physicists discuss the importance of the Higgs Boson, the future of particle physics, and the mysteries of the universe yet to be unraveled. On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars. Starting where Nobel Laureate Leon Lederman's bestseller The God Particle left off, this incisive new book explains what's next. Lederman and Hill discuss key questions that will occupy physicists for years to come:* Why were scientists convinced that something like the "God Particle" had to exist?* What new particles, forces, and laws of physics lie beyond the "God Particle"?* What powerful new accelerators are now needed for the US to recapture a leadership role in science and to reach "beyond the God Particle," such as Fermilab's planned Project-X and the Muon Collider? Using thoughtful, witty, everyday language, the authors show how all of these intriguing questions are leading scientists ever deeper into the fabric of nature. Readers of The God Particle will not want to miss this important sequel.




The Road to Reality


Book Description

**WINNER OF THE 2020 NOBEL PRIZE IN PHYSICS** The Road to Reality is the most important and ambitious work of science for a generation. It provides nothing less than a comprehensive account of the physical universe and the essentials of its underlying mathematical theory. It assumes no particular specialist knowledge on the part of the reader, so that, for example, the early chapters give us the vital mathematical background to the physical theories explored later in the book. Roger Penrose's purpose is to describe as clearly as possible our present understanding of the universe and to convey a feeling for its deep beauty and philosophical implications, as well as its intricate logical interconnections. The Road to Reality is rarely less than challenging, but the book is leavened by vivid descriptive passages, as well as hundreds of hand-drawn diagrams. In a single work of colossal scope one of the world's greatest scientists has given us a complete and unrivalled guide to the glories of the universe that we all inhabit. 'Roger Penrose is the most important physicist to work in relativity theory except for Einstein. He is one of the very few people I've met in my life who, without reservation, I call a genius' Lee Smolin




Get a Grip on Physics


Book Description

Originally published: Get a grip on new physics. London: Weidenfeld and Nicolson, 1999.




Fashion, Faith, and Fantasy in the New Physics of the Universe


Book Description

Nobel Prize–winning physicist Roger Penrose questions some of the most fashionable ideas in physics today, including string theory What can fashionable ideas, blind faith, or pure fantasy possibly have to do with the scientific quest to understand the universe? Surely, theoretical physicists are immune to mere trends, dogmatic beliefs, or flights of fancy? In fact, acclaimed physicist and bestselling author Roger Penrose argues that researchers working at the extreme frontiers of physics are just as susceptible to these forces as anyone else. In this provocative book, he argues that fashion, faith, and fantasy, while sometimes productive and even essential in physics, may be leading today's researchers astray in three of the field's most important areas—string theory, quantum mechanics, and cosmology. Arguing that string theory has veered away from physical reality by positing six extra hidden dimensions, Penrose cautions that the fashionable nature of a theory can cloud our judgment of its plausibility. In the case of quantum mechanics, its stunning success in explaining the atomic universe has led to an uncritical faith that it must also apply to reasonably massive objects, and Penrose responds by suggesting possible changes in quantum theory. Turning to cosmology, he argues that most of the current fantastical ideas about the origins of the universe cannot be true, but that an even wilder reality may lie behind them. Finally, Penrose describes how fashion, faith, and fantasy have ironically also shaped his own work, from twistor theory, a possible alternative to string theory that is beginning to acquire a fashionable status, to "conformal cyclic cosmology," an idea so fantastic that it could be called "conformal crazy cosmology." The result is an important critique of some of the most significant developments in physics today from one of its most eminent figures.




Lie Algebras, Part 2


Book Description

This is the long awaited follow-up to Lie Algebras, Part I which covered a major part of the theory of Kac-Moody algebras, stressing primarily their mathematical structure. Part II deals mainly with the representations and applications of Lie Algebras and contains many cross references to Part I. The theoretical part largely deals with the representation theory of Lie algebras with a triangular decomposition, of which Kac-Moody algebras and the Virasoro algebra are prime examples. After setting up the general framework of highest weight representations, the book continues to treat topics as the Casimir operator and the Weyl-Kac character formula, which are specific for Kac-Moody algebras. The applications have a wide range. First, the book contains an exposition on the role of finite-dimensional semisimple Lie algebras and their representations in the standard and grand unified models of elementary particle physics. A second application is in the realm of soliton equations and their infinite-dimensional symmetry groups and algebras. The book concludes with a chapter on conformal field theory and the importance of the Virasoro and Kac-Moody algebras therein.