How to Generate and Interpret Fire Characteristics Charts for Surface and Crown Fire Behavior


Book Description

A fire characteristics chart is a graph that presents primary related fire behavior characteristics - rate of spread, flame length, fireline intensity, and heat per unit area. It helps communicate and interpret modeled or observed fire behavior. The Fire Characteristics Chart computer program plots either observed fire behavior or values that have been calculated by another computer program such as the BehavePlus fire modeling system. Program operation is described in this report, and its flexibility in format, color, and labeling is demonstrated for use in a variety of reports. A chart produced by the program is suitable for inclusion in briefings, reports, and presentations. Example applications are given for fire model understanding, observed crown fire behavior, ignition pattern effect on fire behavior, prescribed fire planning, briefings, and case studies. The mathematical foundation for the charts is also described. Separate charts are available for surface fire and crown fire because of difference in the flame length model used for each.




How to Generate and Interpret Fire Characteristics Charts for Surface and Crown Fire Behavior


Book Description

A fire characteristics chart is a graph that presents primary related fire behavior characteristics-rate of spread, flame length, fireline intensity, and heat per unit area. It helps communicate and interpret modeled or observed fire behavior. The Fire Characteristics Chart computer program plots either observed fire behavior or values that have been calculated by another computer program such as the BehavePlus fire modeling system. Program operation is described in this report, and its flexibility in format, color, and labeling is demonstrated for use in a variety of reports. A chart produced by the program is suitable for inclusion in briefings, reports, and presentations. Example applications are given for fire model understanding, observed crown fire behavior, ignition pattern effect on fire behavior, prescribed fire planning, briefings, and case studies. The mathematical foundation for the charts is also described. Separate charts are available for surface fire and crown fire because of differences in the flame length model used for each.







Standard Fire Behavior Fuel Models


Book Description

This report describes a new set of standard fire behavior fuel models for use with Rothermels surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.




How to Predict the Spread and Intensity of Forest and Range Fires


Book Description

This manual documents procedures for estimating the rate of forward spread, intensity, flame length, and size of fires burning in forests and rangelands. Contains instructions for obtaining fuel and weather data, calculating fire behavior, and interpreting the results for application to actual fire problems.







Wildland Fire Behaviour


Book Description

Wildland fires have an irreplaceable role in sustaining many of our forests, shrublands and grasslands. They can be used as controlled burns or occur as free-burning wildfires, and can sometimes be dangerous and destructive to fauna, human communities and natural resources. Through scientific understanding of their behaviour, we can develop the tools to reliably use and manage fires across landscapes in ways that are compatible with the constraints of modern society while benefiting the ecosystems. The science of wildland fire is incomplete, however. Even the simplest fire behaviours – how fast they spread, how long they burn and how large they get – arise from a dynamical system of physical processes interacting in unexplored ways with heterogeneous biological, ecological and meteorological factors across many scales of time and space. The physics of heat transfer, combustion and ignition, for example, operate in all fires at millimetre and millisecond scales but wildfires can become conflagrations that burn for months and exceed millions of hectares. Wildland Fire Behaviour: Dynamics, Principles and Processes examines what is known and unknown about wildfire behaviours. The authors introduce fire as a dynamical system along with traditional steady-state concepts. They then break down the system into its primary physical components, describe how they depend upon environmental factors, and explore system dynamics by constructing and exercising a nonlinear model. The limits of modelling and knowledge are discussed throughout but emphasised by review of large fire behaviours. Advancing knowledge of fire behaviours will require a multidisciplinary approach and rely on quality measurements from experimental research, as covered in the final chapters.




Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires


Book Description

This reference work encompasses the current, accepted state of the art in the science of wildfires and wildfires that spread to communities, known as wildland-urban interface (WUI) fires. 171 author contributions include accepted knowledge on these topics from throughout the world, all written by the leading researchers, experts, practitioners, and academics. This encyclopedia is an invaluable reference for newcomers to the field, as well as researchers, students, developers, and professionals who are interested in exploring this dynamic area. General Sections include: Combustion Coordination System Locations Fire Whirls Firebrands and Embers Incident Management Team (IMT) Support Locations Incident Response Support Locations On-the-Incident Locations Soot and Effects on Wildland/WUI Fire Behavior Weathering Effects on Fire Retardant Wood Treatments Wildland Firefighting Locations Wildland Fuel Treatments




Wildland Fire Management Handbook for Sub-Sahara Africa


Book Description

Africa is a fire continent. Since the early evolution of humanity, fire has been harnessed as a land-use tool. Many ecosystems of Sub-Sahara Africa that have been shaped by fire over millennia provide a high carrying capacity for human populations.




Fire Ecology and Management: Past, Present, and Future of US Forested Ecosystems


Book Description

This edited volume presents original scientific research and knowledge synthesis covering the past, present, and potential future fire ecology of major US forest types, with implications for forest management in a changing climate. The editors and authors highlight broad patterns among ecoregions and forest types, as well as detailed information for individual ecoregions, for fire frequencies and severities, fire effects on tree mortality and regeneration, and levels of fire-dependency by plant and animal communities. The foreword addresses emerging ecological and fire management challenges for forests, in relation to sustainable development goals as highlighted in recent government reports. An introductory chapter highlights patterns of variation in frequencies, severities, scales, and spatial patterns of fire across ecoregions and among forested ecosystems across the US in relation to climate, fuels, topography and soils, ignition sources (lightning or anthropogenic), and vegetation. Separate chapters by respected experts delve into the fire ecology of major forest types within US ecoregions, with a focus on the level of plant and animal fire-dependency, and the role of fire in maintaining forest composition and structure. The regional chapters also include discussion of historic natural (lightning-ignited) and anthropogenic (Native American; settlers) fire regimes, current fire regimes as influenced by recent decades of fire suppression and land use history, and fire management in relation to ecosystem integrity and restoration, wildfire threat, and climate change. The summary chapter combines the major points of each chapter, in a synthesis of US-wide fire ecology and forest management into the future. This book provides current, organized, readily accessible information for the conservation community, land managers, scientists, students and educators, and others interested in how fire behavior and effects on structure and composition differ among ecoregions and forest types, and what that means for forest management today and in the future.