Electric Vehicle Battery Systems


Book Description

Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications.Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems.* Addresses cost and efficiency as key elements in the design process* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies







DIY Lithium Batteries


Book Description

An educational guide that covers all the existing types of lithium battery cells and how to assemble them into a custom lithium battery pack.




Batteries for Electric Vehicles


Book Description

This fundamental guide teaches readers the basics of battery design for electric vehicles. Working through this book, you will understand how to optimise battery performance and functionality, whilst minimising costs and maximising durability. Beginning with the basic concepts of electrochemistry, the book moves on to describe implementation, control and management of batteries in real vehicles, with respect to the battery materials. It describes how to select cells and batteries with explanations of the advantages and disadvantages of different battery chemistries, enabling readers to put their knowledge into practice and make informed and successful design decisions, with a thorough understanding of the trade-offs involved. The first of its kind, and written by an industry expert with experience in academia, this is an ideal resource for both students and researchers in the fields of battery research and development as well as for professionals in the automotive industry extending their interest towards electric vehicles.




Behaviour of Lithium-Ion Batteries in Electric Vehicles


Book Description

This book surveys state-of-the-art research on and developments in lithium-ion batteries for hybrid and electric vehicles. It summarizes their features in terms of performance, cost, service life, management, charging facilities, and safety. Vehicle electrification is now commonly accepted as a means of reducing fossil-fuels consumption and air pollution. At present, every electric vehicle on the road is powered by a lithium-ion battery. Currently, batteries based on lithium-ion technology are ranked first in terms of performance, reliability and safety. Though other systems, e.g., metal-air, lithium-sulphur, solid state, and aluminium-ion, are now being investigated, the lithium-ion system is likely to dominate for at least the next decade – which is why several manufacturers, e.g., Toyota, Nissan and Tesla, are chiefly focusing on this technology. Providing comprehensive information on lithium-ion batteries, the book includes contributions by the world’s leading experts on Li-ion batteries and vehicles.




Developing Charging Infrastructure and Technologies for Electric Vehicles


Book Description

The increase in air pollution and vehicular emissions has led to the development of the renewable energy-based generation and electrification of transportation. Further, the electrification shift faces an enormous challenge due to limited driving range, long charging time, and high initial cost of deployment. Firstly, there has been a discussion on renewable energy such as how wind power and solar power can be generated by wind turbines and photovoltaics, respectively, while these are intermittent in nature. The combination of these renewable energy resources with available power generation system will make electric vehicle (EV) charging sustainable and viable after the payback period. Recently, there has also been a significant discussion focused on various EV charging types and the level of power for charging to minimize the charging time. By focusing on both sustainable and renewable energy, as well as charging infrastructures and technologies, the future for EV can be explored. Developing Charging Infrastructure and Technologies for Electric Vehicles reviews and discusses the state of the art in electric vehicle charging technologies, their applications, economic, environmental, and social impact, and integration with renewable energy. This book captures the state of the art in electric vehicle charging infrastructure deployment, their applications, architectures, and relevant technologies. In addition, this book identifies potential research directions and technologies that facilitate insights on EV charging in various charging places such as smart home charging, parking EV charging, and charging stations. This book will be essential for power system architects, mechanics, electrical engineers, practitioners, developers, practitioners, researchers, academicians, and students interested in the problems and solutions to the state-of-the-art status of electric vehicles.




Build Your Own Electric Vehicle, Third Edition


Book Description

BUILD, CONVERT, OR BUY A STATE-OF-THE-ART ELECTRIC VEHICLE Thoroughly revised and expanded, Build Your Own Electric Vehicle, Third Edition, is your go-to guide for converting an internal combustion engine vehicle to electric or building an EV from the ground up. You'll also find out about the wide variety of EVs available for purchase and how they're being built. This new edition details all the latest breakthroughs, including AC propulsion and regenerative braking systems, intelligent controllers, batteries, and charging technologies. Filled with updated photos, this cutting-edge resource fully describes each component--motor, battery, controller, charger, and chassis--and provides illustrated, step-by-step instructions on how to assemble all the parts. Exclusive web content features current supplier and dealer lists. Custom-built for environmentalists, engineers, students, hobbyists, and mechanics, this hands-on guide puts you in the fast lane toward a cost-effective, reliable green machine. Build Your Own Electric Vehicle, Third Edition, covers: Environmental impact and energy savings The best EV for you--purchase trade-offs, conversion trade-offs, and conversion costs Chassis and design Different types of electric motors and controllers Lithium EV batteries Chargers and electrical systems EV builds and conversions Licensing and insuring your EV Driving and maintenance List of manufacturers and dealers regularly updated on website




Lithium-Ion Batteries


Book Description

Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwide array of professional industries. - Contains all applications of consumer and industrial lithium-ion batteries, including reviews, in a single volume - Features contributions from the world's leading industry and research experts - Presents executive summaries of specific case studies - Covers information on basic research and application approaches




Battery Management Algorithm for Electric Vehicles


Book Description

This book systematically introduces readers to the core algorithms of battery management system (BMS) for electric vehicles. These algorithms cover most of the technical bottlenecks encountered in BMS applications, including battery system modeling, state of charge (SOC) and state of health (SOH) estimation, state of power (SOP) estimation, remaining useful life (RUL) prediction, heating at low temperature, and optimization of charging. The book not only presents these algorithms, but also discusses their background, as well as related experimental and hardware developments. The concise figures and program codes provided make the calculation process easy to follow and apply, while the results obtained are presented in a comparative way, allowing readers to intuitively grasp the characteristics of different algorithms. Given its scope, the book is intended for researchers, senior undergraduate and graduate students, as well as engineers in the fields of electric vehicles and energy storage.




The Use of Electric Batteries for Civil Aircraft Applications


Book Description

The Use of Electric Batteries for Civil Aircraft Applications is a comprehensive and focused collection of SAE International technical papers, covering both the past and the present of the efforts to develop batteries that can be specifically installed in commercial aircraft. Recently, major commercial aircraft manufacturers started investigating the possibility of using Li-Ion batteries at roughly the same time that the military launched their first applications. As industry events unfolded, the FAA and committees from RTCA and SAE continued efforts to create meaningful standards for the design, testing, and certification of Li-Ion battery systems for commercial aviation. The first document issued was RTCA DO-311 on Mar. 13, 2008. As the industry continues to develop concepts and designs for the safe utilization of the new Li-Ion battery systems, many are already working on designs for all-electric aircraft, and small two-seat training aircraft are currently flying. The challenges for an all-electric, transport category aircraft will be significant, and the battery design ranks as one of the greatest. The more energy that is packaged into a small area to provide for the propulsion requirements, the more stringent are the design parameters and mitigation methodologies needed to make the system safe. The success or failure of this endeavor lies squarely on the shoulders of the engineers and scientists developing these new systems, and places additional pressure on the regulatory agencies to acquire the relevant knowledge for the creation of minimum operational performance standards for them. Edited by Michael Waller, an industry veteran, The Use of Electric Batteries for Civil Aircraft Applications, is a must-read for those interested in the new power generation making its way into commercial aircraft.