How Vision Works


Book Description

This book covers all aspects of the visual system from sensory aspects to eye movements, attention, and visual memory in a brief format. Each chapter describes the psychology, followed by where in the brain that aspect is dealt with, the properties of the cells in that area, and what happens if a patient has a lesion or stroke in that area.




Webvision


Book Description




Eye: How It Works


Book Description

Explains to the reader how the human eye works.




What can simple brains teach us about how vision works


Book Description

Vision is the process of extracting behaviorally-relevant information from patterns of light that fall on retina as the eyes sample the outside world. Traditionally, nonhuman primates (macaque monkeys, in particular) have been viewed by many as the animal model-of-choice for investigating the neuronal substrates of visual processing, not only because their visual systems closely mirror our own, but also because it is often assumed that “simpler” brains lack advanced visual processing machinery. However, this narrow view of visual neuroscience ignores the fact that vision is widely distributed throughout the animal kingdom, enabling a wide repertoire of complex behaviors in species from insects to birds, fish, and mammals. Recent years have seen a resurgence of interest in alternative animal models for vision research, especially rodents. This resurgence is partly due to the availability of increasingly powerful experimental approaches (e.g., optogenetics and two-photon imaging) that are challenging to apply to their full potential in primates. Meanwhile, even more phylogenetically distant species such as birds, fish, and insects have long been workhorse animal models for gaining insight into the core computations underlying visual processing. In many cases, these animal models are valuable precisely because their visual systems are simpler than the primate visual system. Simpler systems are often easier to understand, and studying a diversity of neuronal systems that achieve similar functions can focus attention on those computational principles that are universal and essential. This Research Topic provides a survey of the state of the art in the use of animal models of visual functions that are alternative to macaques. It includes original research, methods articles, reviews, and opinions that exploit a variety of animal models (including rodents, birds, fishes and insects, as well as small New World monkey, the marmoset) to investigate visual function. The experimental approaches covered by these studies range from psychophysics and electrophysiology to histology and genetics, testifying to the richness and depth of visual neuroscience in non-macaque species.




Vision


Book Description

Descriptions of basic visual mechanisms and related clinical abnormalities, by a neuroscientist and an ophthalmologist.




Making Eye Health a Population Health Imperative


Book Description

The ability to see deeply affects how human beings perceive and interpret the world around them. For most people, eyesight is part of everyday communication, social activities, educational and professional pursuits, the care of others, and the maintenance of personal health, independence, and mobility. Functioning eyes and vision system can reduce an adult's risk of chronic health conditions, death, falls and injuries, social isolation, depression, and other psychological problems. In children, properly maintained eye and vision health contributes to a child's social development, academic achievement, and better health across the lifespan. The public generally recognizes its reliance on sight and fears its loss, but emphasis on eye and vision health, in general, has not been integrated into daily life to the same extent as other health promotion activities, such as teeth brushing; hand washing; physical and mental exercise; and various injury prevention behaviors. A larger population health approach is needed to engage a wide range of stakeholders in coordinated efforts that can sustain the scope of behavior change. The shaping of socioeconomic environments can eventually lead to new social norms that promote eye and vision health. Making Eye Health a Population Health Imperative: Vision for Tomorrow proposes a new population-centered framework to guide action and coordination among various, and sometimes competing, stakeholders in pursuit of improved eye and vision health and health equity in the United States. Building on the momentum of previous public health efforts, this report also introduces a model for action that highlights different levels of prevention activities across a range of stakeholders and provides specific examples of how population health strategies can be translated into cohesive areas for action at federal, state, and local levels.




Conn's Translational Neuroscience


Book Description

Conn's Translational Neuroscience provides a comprehensive overview reflecting the depth and breadth of the field of translational neuroscience, with input from a distinguished panel of basic and clinical investigators. Progress has continued in understanding the brain at the molecular, anatomic, and physiological levels in the years following the 'Decade of the Brain,' with the results providing insight into the underlying basis of many neurological disease processes. This book alternates scientific and clinical chapters that explain the basic science underlying neurological processes and then relates that science to the understanding of neurological disorders and their treatment. Chapters cover disorders of the spinal cord, neuronal migration, the autonomic nervous system, the limbic system, ocular motility, and the basal ganglia, as well as demyelinating disorders, stroke, dementia and abnormalities of cognition, congenital chromosomal and genetic abnormalities, Parkinson's disease, nerve trauma, peripheral neuropathy, aphasias, sleep disorders, and myasthenia gravis. In addition to concise summaries of the most recent biochemical, physiological, anatomical, and behavioral advances, the chapters summarize current findings on neuronal gene expression and protein synthesis at the molecular level. Authoritative and comprehensive, Conn's Translational Neuroscience provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, as well as a clear demonstration of their emerging diagnostic and therapeutic importance. - Provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, while also clearly demonstrating their emerging diagnostic and therapeutic importance - Features contributions from leading global basic and clinical investigators in the field - Provides a great resource for researchers and practitioners interested in the basic science underlying neurological processes - Relates and translates the current science to the understanding of neurological disorders and their treatment




Foundations of Vision


Book Description

Designed for students, scientists and engineers interested in learning about the core ideas of vision science, this volume brings together the broad range of data and theory accumulated in this field.




Improve Your Vision Without Glasses Or Contact Lenses


Book Description

Suggests techniques and therapeutic exercises for the eyes to keep them healthy.




The Vision Revolution


Book Description

In The Vision Revolution: How the Latest Research Overturns Everything We Thought We Knew About Human Vision, Mark Changizi, prominent neuroscientist and vision expert, addresses four areas of human vision and provides explanations for why we have those particular abilities, complete with a number of full-color illustrations to demonstrate his conclusions and to engage the reader. Written for both the casual reader and the science buff hungry for new information, The Vision Revolution is a resource that dispels commonly believed perceptions about sight and offers answers drawn from the field's most recent research. Changizi focuses on four “why" questions: 1. Why do we see in color? 2. Why do our eyes face forward? 3. Why do we see illusions? 4. Why does reading come so naturally to us? Why Do We See in Color? It was commonly believed that color vision evolved to help our primitive ancestors identify ripe fruit. Changizi says we should look closer to home: ourselves. Human color vision evolved to give us greater insights into the mental states and health of other people. People who can see color changes in skin have an advantage over their color-blind counterparts; they can see when people are blushing with embarrassment, purple-faced with exertion or the reddening of rashes. Changizi's research reveals that the cones in our eyes that allow us to see color are exquisitely designed exactly for seeing color changes in the skin. And it's no coincidence that the primates with color vision are the ones with bare spots on their faces and other body parts; Changizi shows that the development of color vision in higher primates closely parallels the loss of facial hair, culminating in the near hairlessness and highly developed color vision of humans. Why Do Our Eyes Face Forward? Forward-facing eyes set us apart from most mammals, and there is much dispute as to why we have them. While some speculate that we evolved this feature to give us depth perception available through stereo vision, this type of vision only allows us to see short distances, and we already have other mechanisms that help us to estimate distance. Changizi's research shows that with two forward-facing eyes, primates and humans have an x-ray ability. Specifically, we're able to see through the cluttered leaves of the forest environment in which we evolved. This feature helps primates see their targets in a crowded, encroached environment. To see how this works, hold a finger in front of your eyes. You'll find that you're able to look “through" it, at what is beyond your finger. One of the most amazing feats of two forward-facing eyes? Our views aren't blocked by our noses, beaks, etc. Why Do We See Illusions? We evolved to see moving objects, not where they are, but where they are going to be. Without this ability, we couldn't catch a ball because the brain's ability to process visual information isn't fast enough to allow us to put our hands in the right place to intersect for a rapidly approaching baseball. “If our brains simply created a perception of the way the world was at the time light hit the eye, then by the time that perception was elicited—which takes about a tenth of a second for the brain to do—time would have marched on, and the perception would be of the recent past," Changizi explains. Simply put, illusions occur when our brain is tricked into thinking that a stationary two-dimensional picture has an element that is moving. Our brains project the “moving" element into the future and, as a result, we don't see what's on the page, but what our brain thinks will be the case a fraction of a second into the future. Why Does Reading Come So Naturally to Us? We can read faster than we can hear, which is odd, considering that reading is relatively recent,