HTGR Technology Family Assessment for a Range of Fuel Cycle Missions


Book Description

This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR "full recycle" service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the "pebble bed" approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R & D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in "limited separation" or "minimum fuel treatment" separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.










Thorium Fuel Cycle


Book Description

Provides a critical review of the thorium fuel cycle: potential benefits and challenges in the thorium fuel cycle, mainly based on the latest developments at the front end of the fuel cycle, applying thorium fuel cycle options, and at the back end of the thorium fuel cycle.




Internationalization of the Nuclear Fuel Cycle


Book Description

The so-called nuclear renaissance has increased worldwide interest in nuclear power. This potential growth also has increased, in some quarters, concern that nonproliferation considerations are not being given sufficient attention. In particular, since introduction of many new power reactors will lead to requiring increased uranium enrichment services to provide the reactor fuel, the proliferation risk of adding enrichment facilities in countries that do not have them now led to proposals to provide the needed fuel without requiring indigenous enrichment facilities. Similar concerns exist for reprocessing facilities. Internationalization of the Nuclear Fuel Cycle summarizes key issues and analyses of the topic, offers some criteria for evaluating options, and makes findings and recommendations to help the United States, the Russian Federation, and the international community reduce proliferation and other risks, as nuclear power is used more widely. This book is intended for all those who are concerned about the need for assuring fuel for new reactors and at the same time limiting the spread of nuclear weapons. This audience includes the United States and Russia, other nations that currently supply nuclear material and technology, many other countries contemplating starting or growing nuclear power programs, and the international organizations that support the safe, secure functioning of the international nuclear fuel cycle, most prominently the International Atomic Energy Agency.




Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors


Book Description

The reactors around the world have produced more than 2000 tonnes of plutonium, contained in spent fuel or as separated forms through reprocessing. Disposition of fissile materials has become a primary concern of nuclear non-proliferation efforts worldwide. There is a significant interest in IAEA Member States to develop proliferation resistant nuclear fuel cycles for incineration of plutonium such as inert matrix fuels (IMFs). This publication reviews the status of potential IMF candidates and describes several identified candidate materials for both fast and thermal reactors: MgO, ZrO2, SiC, Zr alloy, SiAl, ZrN; some of these have undergone test irradiations and post irradiation examination. Also discussed are modelling of IMF fuel performance and safety analysis. System studies have identified strategies for both implementation of IMF fuel as homogeneous or heterogeneous phases, as assemblies or core loadings and in existing reactors in the shorter term, as well as in new reactors in the longer term.




The Technological and Economic Future of Nuclear Power


Book Description

This open access book discusses the eroding economics of nuclear power for electricity generation as well as technical, legal, and political acceptance issues. The use of nuclear power for electricity generation is still a heavily disputed issue. Aside from technical risks, safety issues, and the unsolved problem of nuclear waste disposal, the economic performance is currently a major barrier. In recent years, the costs have skyrocketed especially in the European countries and North America. At the same time, the costs of alternatives such as photovoltaics and wind power have significantly decreased.







Reactor Development


Book Description




Fuel Breeding


Book Description