Mapping and Sequencing the Human Genome


Book Description

There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.




Heritable Human Genome Editing


Book Description

Heritable human genome editing - making changes to the genetic material of eggs, sperm, or any cells that lead to their development, including the cells of early embryos, and establishing a pregnancy - raises not only scientific and medical considerations but also a host of ethical, moral, and societal issues. Human embryos whose genomes have been edited should not be used to create a pregnancy until it is established that precise genomic changes can be made reliably and without introducing undesired changes - criteria that have not yet been met, says Heritable Human Genome Editing. From an international commission of the U.S. National Academy of Medicine, U.S. National Academy of Sciences, and the U.K.'s Royal Society, the report considers potential benefits, harms, and uncertainties associated with genome editing technologies and defines a translational pathway from rigorous preclinical research to initial clinical uses, should a country decide to permit such uses. The report specifies stringent preclinical and clinical requirements for establishing safety and efficacy, and for undertaking long-term monitoring of outcomes. Extensive national and international dialogue is needed before any country decides whether to permit clinical use of this technology, according to the report, which identifies essential elements of national and international scientific governance and oversight.




Human Genome Editing


Book Description

Genome editing is a powerful new tool for making precise alterations to an organism's genetic material. Recent scientific advances have made genome editing more efficient, precise, and flexible than ever before. These advances have spurred an explosion of interest from around the globe in the possible ways in which genome editing can improve human health. The speed at which these technologies are being developed and applied has led many policymakers and stakeholders to express concern about whether appropriate systems are in place to govern these technologies and how and when the public should be engaged in these decisions. Human Genome Editing considers important questions about the human application of genome editing including: balancing potential benefits with unintended risks, governing the use of genome editing, incorporating societal values into clinical applications and policy decisions, and respecting the inevitable differences across nations and cultures that will shape how and whether to use these new technologies. This report proposes criteria for heritable germline editing, provides conclusions on the crucial need for public education and engagement, and presents 7 general principles for the governance of human genome editing.




Evaluating Human Genetic Diversity


Book Description

This book assesses the scientific value and merit of research on human genetic differencesâ€"including a collection of DNA samples that represents the whole of human genetic diversityâ€"and the ethical, organizational, and policy issues surrounding such research. Evaluating Human Genetic Diversity discusses the potential uses of such collection, such as providing insight into human evolution and origins and serving as a springboard for important medical research. It also addresses issues of confidentiality and individual privacy for participants in genetic diversity research studies.




Genomics


Book Description

A unique exploration of the principles and methods underlying the Human Genome Project and modern molecular genetics and biotechnology-from two top researchers In Genomics, Charles R. Cantor, former director of the Human Genome Project, and Cassandra L. Smith give the first integral overview of the strategies and technologies behind the Human Genome Project and the field of molecular genetics and biotechnology. Written with a range of readers in mind-from chemists and biologists to computer scientists and engineers-the book begins with a review of the basic properties of DNA and the chromosomes that package it in cells. The authors describe the three main techniques used in DNA analysis-hybridization, polymerase chain reaction, and electrophoresis-and present a complete exploration of DNA mapping in its many different forms. By explaining both the theoretical principles and practical foundations of modern molecular genetics to a wide audience, the book brings the scientific community closer to the ultimate goal of understanding the biological function of DNA. Genomics features: * Topical organization within chapters for easy reference * A discussion of the developing methods of sequencing, such as sequencing by hybridization (SBH) in which data is read through words instead of letters * Detailed explanations and critical evaluations of the many different types of DNA maps that can be generated-including cytogenic and restriction maps as well as interspecies cell hybrids * Informed predictions for the future of DNA sequencing




Human Genome Structure, Function and Clinical Considerations


Book Description

This book provides a detailed evidence-based overview of the latest developments in how the structure of the human genome is relevant to the health professional. It features comprehensive reviews of genome science including human chromosomal and mitochondrial DNA structure, protein-coding and noncoding genes, and the diverse classes of repeat elements of the human genome. These concepts are then built upon to provide context as to how they functionally relate to differences in phenotypic traits that can be observed in human populations. Guidance is also provided on how this information can be applied by the medical practitioner in day-to-day clinical practice. Human Genome Structure, Function and Clinical Considerations collates the latest developments in genome science and current methods for genome analysis that are relevant for the clinician, researcher and scientist who utilises precision medicine techniques and is an essential resource for any such practitioner.




The Human Genome in Health and Disease


Book Description

The human genome is a linear sequence of roughly 3 billion bases and information regarding this genome is accumulating at an astonishing rate. Inspired by these advances, The Human Genome in Health and Disease: A Story of Four Letters explores the intimate link between sequence information and biological function. A range of sequence-based functional units of the genome are discussed and illustrated with inherited disorders and cancer. In addition, the book considers valuable medical applications related to human genome sequencing, such as gene therapy methods and the identification of causative mutations in rare genetic disorders. The primary audiences of the book are students of genetics, biology, medicine, molecular biology and bioinformatics. Richly illustrated with review questions provided for each chapter, the book helps students without previous studies of genetics and molecular biology. It may also be of benefit for advanced non-academics, which in the era of personal genomics, want to learn more about their genome. Key selling features: Molecular sequence perspective, explaining the relationship between DNA sequence motifs and biological function Aids in understanding the functional impact of mutations and genetic variants Material presented at basic level, making it accessible to students without previous studies of genetics and molecular biology Richly illustrated with questions provided to each chapter




Sequence — Evolution — Function


Book Description

Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.







The Yeast Two-hybrid System


Book Description

This volume, part of the Advances in Molecular Biology series, presents work by pioneers in the field and is the first publication devoted solely to the yeast two-hybrid system. It includes detailed protocols, practical advice on troubleshooting, and suggestions for future development. In addition, it illustrates how to construct an activation domain hybrid library, how to identify mutations that disrupt an interaction, and how to use the system in mammalian cells. Many of the contributors have developed new applications and variations of the technique.