Human Orthopaedic Biomechanics


Book Description

Human Orthopaedic Biomechanics: Fundamentals, Devices and Applications covers a wide range of biomechanical topics and fields, ranging from theoretical issues, mechanobiology, design of implants, joint biomechanics, regulatory issues and practical applications. The book teaches the fundamentals of physiological loading and constraint conditions at various parts of the musculoskeletal system. It is an ideal resource for teaching and education in courses on orthopedic biomechanics, and for engineering students engaged in these courses. In addition, all bioengineers who have an interest in orthopedic biomechanics will find this title useful as a reference, particularly early career researchers and industry professionals. Finally, any orthopedic surgeons looking to deepen their knowledge of biomechanical aspects will benefit from the accessible writing style in this title. - Covers theoretical aspects (mechanics, stress analysis, constitutive laws for the various musculoskeletal tissues and mechanobiology) - Presents components of different regulatory aspects, failure analysis, post-marketing and clinical trials - Includes state-of-the-art methods used in orthopedic biomechanics and in designing orthopedic implants (experimental methods, finite element and rigid-body models, gait and fluoroscopic analysis, radiological measurements)




Orthopaedic Biomechanics in Sports Medicine


Book Description

This book presents a fundamental basic overview of orthopedic biomechanics in sports medicine, with a special focus on the current methodologies used in modeling human joints, ligaments, and muscle forces. The first part discusses the principles and materials, including the use of finite element analysis (FEA) to analyze the stress-strain response in the implant-bone interface and design. The second part focuses on joint-specific biomechanics, highlighting the biomechanics of the knee and shoulder joints, their modeling, surgical techniques, and the clinical assessment of joint performance under various kinematic conditions resulting from different repair techniques. Written by international experts working at the cutting edge of their fields, this book is an easy-to-read guide to the fundamentals of biomechanics. It also offers a source of reference for readers wanting to explore new research topics, and is a valuable tool for orthopedic surgeons, residents, and medical students with an interest in orthopedic biomechanics.​




Frontiers in Orthopaedic Biomechanics


Book Description

This book provides state-of-the-art and up-to-date discussions on the pathology-related considerations and implications in the field of orthopaedic biomechanics. It presents fundamental engineering and mechanical theories concerning the biomechanics of orthopaedic and anatomical structures, and explores the biological and mechanical features that influence or modify the biomechanics of these structures. It also addresses clinically relevant biomechanical issues with a focus on diagnosis, injury, prevention and treatment. The first 12 chapters of the book provide a detailed review of the principles of orthopaedic biomechanics in the musculoskeletal system, including cartilage, bone, muscles and tendon, ligament, and multiple joints. Each chapter also covers important biomechanical concepts relevant to surgical and clinical practice. The remaining chapters examines clinically relevant trauma and injury challenges in the field, including diagnostic techniques such as movement analysis and rehabilitation intervention. Lastly it describes advanced considerations and approaches for fracture fixation, implant design, and biomaterials.




Biomechanics of the Spine


Book Description

Biomechanics of the Spine encompasses the basics of spine biomechanics, spinal tissues, spinal disorders and treatment methods. Organized into four parts, the first chapters explore the functional anatomy of the spine, with special emphasis on aspects which are biomechanically relevant and quite often neglected in clinical literature. The second part describes the mechanics of the individual spinal tissues, along with commonly used testing set-ups and the constitutive models used to represent them in mathematical studies. The third part covers in detail the current methods which are used in spine research: experimental testing, numerical simulation and in vivo studies (imaging and motion analysis). The last part covers the biomechanical aspects of spinal pathologies and their surgical treatment. This valuable reference is ideal for bioengineers who are involved in spine biomechanics, and spinal surgeons who are looking to broaden their biomechanical knowledge base. The contributors to this book are from the leading institutions in the world that are researching spine biomechanics. - Includes broad coverage of spine disorders and surgery with a biomechanical focus - Summarizes state-of-the-art and cutting-edge research in the field of spine biomechanics - Discusses a variety of methods, including In vivo and In vitro testing, and finite element and musculoskeletal modeling




Orthopaedic Biomechanics


Book Description

Given the strong current attention of orthopaedic, biomechanical, and biomedical engineering research on translational capabilities for the diagnosis, prevention, and treatment of clinical disease states, the need for reviews of the state-of-art and current needs in orthopaedics is very timely. Orthopaedic Biomechanics provides an in-depth review o




Experimental Methods in Orthopaedic Biomechanics


Book Description

Experimental Methods in Orthopaedic Biomechanics is the first book in the field that focuses on the practicalities of performing a large variety of in-vitro laboratory experiments. Explanations are thorough, informative, and feature standard lab equipment to enable biomedical engineers to advance from a 'trial and error' approach to an efficient system recommended by experienced leaders. This is an ideal tool for biomedical engineers or biomechanics professors in their teaching, as well as for those studying and carrying out lab assignments and projects in the field. The experienced authors have established a standard that researchers can test against in order to explain the strengths and weaknesses of testing approaches. - Provides step-by-step guidance to help with in-vitro experiments in orthopaedic biomechanics - Presents a DIY manual that is fully equipped with illustrations, practical tips, quiz questions, and much more - Includes input from field experts who combine their real-world experience to provide invaluable insights for all those in the field




Orthopaedic Biomechanics Made Easy


Book Description

Orthopaedic surgeons require not only an understanding of anatomy and clinical sciences, and competence in surgical skills, but also a strong foundation in biomechanics. The application of biomechanics plays an increasing role in modern orthopaedics; for example, correct decisions about the mode of treatment and choice of implants are just as important as operating precisely to reach a specific anatomical landmark. This book simplifies the core principles in orthopaedic biomechanics, giving readers the solid grounding they need to flourish in the specialty. Each topic is covered in a discrete, double-page spread, featuring concise text accompanied by illustrations or tables to give readers a solid understanding of the concepts discussed. This is a must-read guide for orthopaedic trainees at every level, and will be valuable for biomechanical researchers and other professionals in the field.




Orthopaedic Biomechanics


Book Description

The majority of basic science books available today aim to cover a broad range of topics, from biomechanics to genetics and statistics. There is no doubt that these texts provide trainees with a reasonable foundation with which to tackle those tricky questions whilst the cement is setting, and will even serve you well in the initial stages of exam preparation.But how often have you read a chapter on biomechanics in a general purpose basic science book and felt like you still haven't found the answer you were looking for? And how many times have you subsequently sought the answer in a text book on 'pure' orthopaedic biomechanics only to wake up hours later wondering where the day has gone?This book focusses specifically on Orthopaedic Biomechanics. It's been written for orthopaedic trainee's, by orthopaedic trainees and is designed to give you a little more than the broad brushstrokes many other books deliver, whilst also holding back from being an in-depth engineering text.The first half of the book covers the biomechanics of all tissue types relevant to Orthopaedics, as well as all joints in the body. The second half of the book explores the key biomechanical principles underlying arthroplasty, fracture healing and fixation as well as gait abnormalities. Having focussed on writing this book in a way that is accessible to fellow trainees, we hope you find this a useful adjunct to your training, exam preparation and beyond.We hope you enjoy reading it as much as we enjoyed putting it together.




Fundamentals of Orthopaedic Biomechanics


Book Description

Two well-known educators in orthopaedics - with almost fifty years of combined experience - have created this valuable reference based on their highly successful course. Coverage includes forces and moments in the musculoskeletal system, musculoskeletal performance, joint stability, mechanical behavior of materials, mechanical behavior of skeletal structures, mechanical behavior of bone, and performance of implant systems. . . . All in a book with these benefits: solid, clearly written introductory orientation; high-quality, original line art; principles explained using only the most basic fundamentals of algebra; and each major biomechanical concept clarified, using specific clinical examples.




Orthopedic Biomechanics


Book Description

Orthopedic Biomechanics sheds light on an important and interesting discipline at the interface between medical and natural sciences. Understanding the effects of mechanical influences on the human body is the first step toward developing innovative treatment and rehabilitation concepts for orthopedic disorders. This book provides valuable information on the forces acting on muscles, tendons, and bones. Beginning with the step-by-step fundamentals of physics and mechanics, it goes on to cover the function and loading of joints, movement in two- and three-dimensions, and the properties of biological tissues. This book explains the practical importance of biomechanics, including special chapters addressing the mechanical causes of disk prolapse, load on the spine in sitting and standing positions, and the correlation between mechanical loading and bone density. Key Features: Limited use of complex vector equations while providing in-depth treatment analysis Exquisitely illustrated, detailed descriptions of the mechanical aspects of every major joint in the body: hip, shoulder, knee, and lumbar spine Extensive references for further information Valuable appendixes describing the interaction between mechanical and biological functions as well as mathematical tools necessary to understand technically demanding concepts This book also analyzes techniques for changing the effects on bones and joints through therapy, training, external aids, modified behavior, and ergonomic improvements. An essential resource for orthopedists and physical therapists alike, it will help you understand past and current scientific work in the field and how to apply state-of-the-art solutions to the problems you'll encounter on a daily basis.