Computer Vision – ECCV 2022


Book Description

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.




Pattern Recognition. ICPR International Workshops and Challenges


Book Description

This 8-volumes set constitutes the refereed of the 25th International Conference on Pattern Recognition Workshops, ICPR 2020, held virtually in Milan, Italy and rescheduled to January 10 - 11, 2021 due to Covid-19 pandemic. The 416 full papers presented in these 8 volumes were carefully reviewed and selected from about 700 submissions. The 46 workshops cover a wide range of areas including machine learning, pattern analysis, healthcare, human behavior, environment, surveillance, forensics and biometrics, robotics and egovision, cultural heritage and document analysis, retrieval, and women at ICPR2020.




Computer Vision – ECCV 2018


Book Description

The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.







Intelligent Systems


Book Description

The two-volume set LNAI 13653 and 13654 constitutes the refereed proceedings of the 11th Brazilian Conference on Intelligent Systems, BRACIS 2022, which took place in Campinas, Brazil, in November/December 2022. The 89 papers presented in the proceedings were carefully reviewed and selected from 225 submissions. The conference deals with theoretical aspects and applications of artificial and computational intelligence.




Modelling the Physiological Human


Book Description

Annotation. This book constitutes the proceedings of the Second 3D Physiological Human Workshop, 3DPH 2009, held in Zermatt, Switzerland, in November/December 2009. The 19 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on Segmentation, Anatomical and Physiological Modelling, Simulation Models, Motion Analysis, Medical Visualization and Interaction, as well as Medical Ontology.




Computer Vision – ECCV 2020 Workshops


Book Description

The 6-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic. The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics. Part II focusses on commands for autonomous vehicles; computer vision for ART analysis; sign language recognition, translation and production; visual inductive priors for data-efficient deep learning; 3D poses in the wild challenge; map-based localization for autonomous driving; recovering 6D object pose; and shape recovery from partial textured 3D scans.




Pose Estimation and Calibration Algorithms for Vision and Inertial Sensors


Book Description

This thesis deals with estimating position and orientation in real-time, using measurements from vision and inertial sensors. A system has been developed to solve this problem in unprepared environments, assuming that a map or scene model is available. Compared to 'camera-only' systems, the combination of the complementary sensors yields an accurate and robust system which can handle periods with uninformative or no vision data and reduces the need for high frequency vision updates.