Hyaluronic Acid for Biomedical and Pharmaceutical Applications


Book Description

Hyaluronic acid (HA) is found in extracellular tissue in many parts of the body. It is a material of increasing importance to biomaterials science and is finding applications in diverse areas ranging from tissue culture scaffolds to cosmetic materials. Its properties, both physical and biochemical, in solution or hydrogel form, are extremely attractive for various technologies concerned with body repair. This book considers the materials science behind some of the important biomedical and therapeutic applications that are emerging for HA. Key characteristics such as its mechanical properties, biological function and degradation are discussed. The latest technologies in chemical modification and crosslinking strategies are analysed and emerging applications in soft and hard tissue repair are highlighted. The first objective of the book, which consists of a collection of chapters from leading researchers across the globe, is to highlight the role of HA based hydrogels as scaffolds in sustaining stem cells for transplantation and regrowth. The second objective is to detail the significant influence of HA derived materials in the latest advances in cancer therapy, general therapeutics and cosmetics. The third objective is to link the structure-property relationships of HA to medical function and application while reflecting on current clinical and market trends. The book will be of interest to those involved in HA research for medical device and therapeutic applications. Graduate and undergraduate students engaged in the fields of biomedical engineering, materials science, chemistry, medical science, pharmaceutical science and polymer science will find this book of particular interest.




Polymers in Medicine


Book Description

The utilization of polymers in medicine has become a reality in the last decade. This book is a concise presentation of the fundamentals, applications, and methods of optimization of polymeric drugs and polymeric drug delivery systems for medicinal purposes. The basic rationale for the use of polymeric drugs and polymer delivery systems is the possibility to alter the pharmacokinetics and pharmacodynamics of therapeutic agents so as to maintain an adequate therapeutic environment at the site of disfunction for an extended period of time. The primary objectives for using polymeric drugs and polymeric drug delivery systems are to introduce new and efficient methods of drug administration, to improve efficacy and patient compliance, to decrease toxicity, and to ensure safety. The following factors influence the design and performance of polymers for medicinal applications: disease, drug properties, type of therapy (acute or chronic), physiology of the patient, administration route, and the site requiring therapy.




Natural Polysaccharides in Drug Delivery and Biomedical Applications


Book Description

Natural Polysaccharides in Drug Delivery and Biomedical Applications provides a fundamental overview of natural polysaccharides, their sources, extraction methodologies, and characterizations. It covers specific natural polysaccharides and their effective application in drug delivery and biomedical use. Additionally, chapters in the book discuss key topics including the sources and extraction methodologies of natural polysaccharides, their role in tissue engineering applications, polysaccharide-based nanoparticles in biomedical applications, and their role in the delivery of anticancer drugs. Written by industry leaders and edited by experts, this book emphasizes recent advances made in the field. Natural Polysaccharides in Drug Delivery and Biomedical Applications provides academics, researchers, and pharmaceutical health care professionals with a comprehensive book on polysaccharides in pharmaceutical delivery process. Provides fundamental concepts of natural polysaccharides as it applies to the pharmaceutical, biomedical, and biotechnology industries Includes contributions from global leaders and experts from academia, industry, and regulatory agencies in the application of natural polysaccharides in pharmaceutical products and biomedical utilization Offers practical examples, illustrations, chemical structures, and research case studies to help explain natural polysaccharides concepts in drug delivery and biomedical applications




Hydrogels


Book Description

Hydrogels are crosslinked, macromolecular polymeric materials arranged in a three-dimensional network, which can absorb and retain large amounts of water. Hydrogels are commonly used in clinical practice and experimental medicine for a wide range of applications, including drug delivery, tissue engineering and regenerative medicine, diagnostics, cellular immobilization, separation of biomolecules or cells, and barrier materials to regulate biological adhesions. This book elucidates the underlying concepts and emerging applications of hydrogels and will provide key case studies and critical analysis of the existing research.




The Biology of Hyaluronan


Book Description

Presents state-of-the-art applications in hyaluronan research, from hyaluronan's physicochemical properties to its clinical role as a connective tissue marker and its surgical implications, particularly in ear, eye and orthopaedic surgery. Covers hyaluronan's synthesis and catabolism, its role in cells, its interactions with specific binding proteins, and its role in the embryonic nervous system.







Functional Biomaterials


Book Description

This book explores in depth a wide range of functional biomaterials-based systems for drug, gene delivery, and biomedical aspects. The chapters cover newer technologies such as polymeric micelle, pH-responsive biomaterials, stimuli-responsive hydrogels, silk fibroin, inorganic biomaterials, synthetic biomaterials, 3D printed biomaterials, metallic biomaterials, ceramic and hybrid biomaterials. It also describes the theranostic approaches for cancer therapy, the biomaterials-based nanofibers scaffolds in tissue engineering, as well as the strategies applications of metallic biomaterials for the medical and dental prosthetic field. This newer and updated approach will be attractive for biomedical engineering students working on materials science in the development of novel drug delivery strategies. The book will be an important reference for researchers and professionals working on biomaterial research in the pharmaceutical and medical fields.




Polysaccharide Hydrogels


Book Description

Hydrogels are an emerging area of interest in medicine as well as pharmaceutics, and their physico-chemical characterization is fundamental to their practical applications. Compared with synthetic polymers, polysaccharides that are widely present in living organisms and come from renewable sources are extremely advantageous for hydrogel formation.




Functional Polysaccharides for Biomedical Applications


Book Description

Functional Polysaccharides for Biomedical Applications examines the fundamentals and properties of these natural materials and their potential biomedical applications. With an emphasis on therapeutic and sensing applications, the book also reviews how polysaccharides can be modified for tissue engineering applications. Sections discuss the basics of polysaccharides, give an overview of the potential applications, look at novel materials and technologies for use in tissue regeneration and therapeutics, and detail current biomedical applications. With a strong focus on materials, engineering and applications, this book is a valuable resource for those with an interest in harnessing the biomedical potential of natural polymers. Describes strategies for developing polysaccharides-based biomedical devices Illustrates concepts and encompasses scope for clinical development Provides advanced and comprehensive information on biomedical constructs




Natural Polymers for Pharmaceutical Applications


Book Description

In recent years, many animal-derived polymers have emerged as an attractive category of naturally derived polymers because of their advantageous physicochemical, chemical, and biological properties. The important biological properties of these natural polymers derived from animals are biocompatibility and biodegradation. These polymers are generally composed of repeated units of amino acids. Moreover, these polymers can be modified physically and/or chemically to improve their biomaterial properties. Natural Polymers for Pharmaceutical Applications, Volume 3: Animal-Derived Polymers looks at how these polymers can be exploited as pharmaceutical excipients in various pharmaceutical dosage forms, like microparticles, nanoparticles, ophthalmic preparations, gels, implants, etc. The commonly used animal-derived polymers used as pharmaceutical excipients are hyaluronic acid (hyaluronan), albumin, collagen, gelatin, chondroitin, etc.