Hybrid Artificial Intelligence and IoT in Healthcare


Book Description

This book covers applications for hybrid artificial intelligence (AI) and Internet of Things (IoT) for integrated approach and problem solving in the areas of radiology, drug interactions, creation of new drugs, imaging, electronic health records, disease diagnosis, telehealth, and mobility-related problems in healthcare. The book discusses the convergence of AI and the hybrid approaches in healthcare which optimizes the possible solutions and better treatment. Internet of Things (IoT) in healthcare is the next-gen technologies which automate the healthcare facility by mobility solutions are discussed in detail. It also discusses hybrid AI with bio-inspired techniques, genetic algorithm, neuro-fuzzy algorithms, and soft computing approaches which significantly improves the prediction of critical cardiovascular abnormalities and other healthcare solutions to the ongoing challenging research.




Artificial Intelligence and Internet of Things


Book Description

This book reveals the applications of AI and IoT in smart healthcare and medical systems. It provides core principles, algorithms, protocols, emerging trends, security problems, and the latest e-healthcare services findings. The book also provides case studies and discusses how AI and IoT applications such as wireless devices, sensors, and deep learning could play a major role in assisting patients, doctors, and pharmaceutical staff. It focuses on how to use AI and IoT to keep patients safe and healthy and, at the same time, empower physicians to deliver superlative care. This book is written for researchers and practitioners working in the information technology, computer science, and medical equipment manufacturing industry for products and services having basic- and high-level AI and IoT applications. The book is also a useful guide for academic researchers and students.




Artificial Intelligence for the Internet of Health Things


Book Description

This book discusses research in Artificial Intelligence for the Internet of Health Things. It investigates and explores the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in design, implementation, and optimization of challenging healthcare solutions. This book features a wide range of topics such as AI techniques, IoT, cloud, wearables, and secured data transmission. Written for a broad audience, this book will be useful for clinicians, health professionals, engineers, technology developers, IT consultants, researchers, and students interested in the AI-based healthcare applications. Provides a deeper understanding of key AI algorithms and their use and implementation within the wider healthcare sector Explores different disease diagnosis models using machine learning, deep learning, healthcare data analysis, including machine learning, and data mining and soft computing algorithms Discusses detailed IoT, wearables, and cloud-based disease diagnosis model for intelligent systems and healthcare Reviews different applications and challenges across the design, implementation, and management of intelligent systems and healthcare data networks Introduces a new applications and case studies across all areas of AI in healthcare data K. Shankar (Member, IEEE) is a Postdoctoral Fellow of the Department of Computer Applications, Alagappa University, Karaikudi, India. Eswaran Perumal is an Assistant Professor of the Department of Computer Applications, Alagappa University, Karaikudi, India. Dr. Deepak Gupta is an Assistant Professor of the Department Computer Science & Engineering, Maharaja Agrasen Institute of Technology (GGSIPU), Delhi, India.




Machine Learning for Healthcare Applications


Book Description

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.




Hybrid Artificial Intelligence and IoT in Healthcare


Book Description

This book covers applications for hybrid artificial intelligence (AI) and Internet of Things (IoT) for integrated approach and problem solving in the areas of radiology, drug interactions, creation of new drugs, imaging, electronic health records, disease diagnosis, telehealth, and mobility-related problems in healthcare. The book discusses the convergence of AI and the hybrid approaches in healthcare which optimizes the possible solutions and better treatment. Internet of Things (IoT) in healthcare is the next-gen technologies which automate the healthcare facility by mobility solutions are discussed in detail. It also discusses hybrid AI with bio-inspired techniques, genetic algorithm, neuro-fuzzy algorithms, and soft computing approaches which significantly improves the prediction of critical cardiovascular abnormalities and other healthcare solutions to the ongoing challenging research.




Smart Healthcare System Design


Book Description

SMART HEALTHCARE SYSTEM DESIGN This book deeply discusses the major challenges and issues for security and privacy aspects of smart health-care systems. The Internet-of-Things (IoT) has emerged as a powerful and promising technology, and though it has significant technological, social, and economic impacts, it also poses new security and privacy challenges. Compared with the traditional internet, the IoT has various embedded devices, mobile devices, a server, and the cloud, with different capabilities to support multiple services. The pervasiveness of these devices represents a huge attack surface and, since the IoT connects cyberspace to physical space, known as a cyber-physical system, IoT attacks not only have an impact on information systems, but also affect physical infrastructure, the environment, and even human security. The purpose of this book is to help achieve a better integration between the work of researchers and practitioners in a single medium for capturing state-of-the-art IoT solutions in healthcare applications, and to address how to improve the proficiency of wireless sensor networks (WSNs) in healthcare. It explores possible automated solutions in everyday life, including the structures of healthcare systems built to handle large amounts of data, thereby improving clinical decisions. The 14 separate chapters address various aspects of the IoT system, such as design challenges, theory, various protocols, implementation issues, as well as several case studies. Smart Healthcare System Design covers the introduction, development, and applications of smart healthcare models that represent the current state-of-the-art of various domains. The primary focus is on theory, algorithms, and their implementation targeted at real-world problems. It will deal with different applications to give the practitioner a flavor of how IoT architectures are designed and introduced into various situations. Audience: Researchers and industry engineers in information technology, artificial intelligence, cyber security, as well as designers of healthcare systems, will find this book very valuable.




Evolution and Applications of Quantum Computing


Book Description

EVOLUTION and APPLICATIONS of QUANTUM COMPUTING The book is about the Quantum Model replacing traditional computing’s classical model and gives a state-of-the-art technical overview of the current efforts to develop quantum computing and applications for Industry 4.0. A holistic approach to the revolutionary world of quantum computing is presented in this book, which reveals valuable insights into this rapidly emerging technology. The book reflects the dependence of quantum computing on the physical phenomenon of superposition, entanglement, teleportation, and interference to simplify difficult mathematical problems which would have otherwise taken years to derive a definite solution for. An amalgamation of the information provided in the multiple chapters will elucidate the revolutionary and riveting research being carried out in the brand-new domain encompassing quantum computation, quantum information and quantum mechanics. Each chapter gives a concise introduction to the topic. The book comprises 18 chapters and describes the pioneering work on the interaction between artificial intelligence, machine learning, and quantum computing along with their applications and potential role in the world of big data. Subjects include: Combinational circuits called the quantum multiplexer with secured quantum gate (CSWAP); Detecting malicious emails and URLs by using quantum text mining algorithms to distinguish between phishing and benign sites; Quantum data traffic analysis for intrusion detection systems; Applications of quantum computation in banking, netnomy and vehicular ad-hoc networks, virtual reality in the education of autistic children, identifying bacterial diseases and accelerating drug discovery; The critical domain of traditional classical cryptography and quantum cryptography. Audience The book will be very useful for researchers in computer science, artificial intelligence and quantum physics as well as students who want to understand the history of quantum computing along with its applications and have a technical state-of-the-art overview.




Smart Systems for Industrial Applications


Book Description

SMART SYSTEMS FOR INDUSTRIAL APPLICATIONS The prime objective of this book is to provide an insight into the role and advancements of artificial intelligence in electrical systems and future challenges. The book covers a broad range of topics about AI from a multidisciplinary point of view, starting with its history and continuing on to theories about artificial vs. human intelligence, concepts, and regulations concerning AI, human-machine distribution of power and control, delegation of decisions, the social and economic impact of AI, etc. The prominent role that AI plays in society by connecting people through technologies is highlighted in this book. It also covers key aspects of various AI applications in electrical systems in order to enable growth in electrical engineering. The impact that AI has on social and economic factors is also examined from various perspectives. Moreover, many intriguing aspects of AI techniques in different domains are covered such as e-learning, healthcare, smart grid, virtual assistance, etc. Audience The book will be of interest to researchers and postgraduate students in artificial intelligence, electrical and electronic engineering, as well as those engineers working in the application areas such as healthcare, energy systems, education, and others.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Intelligent Systems and IoT Applications in Clinical Health


Book Description

Integrating intelligent systems and internet of things (IoT) into clinical health is crucial for enhancing patient care and operational efficiency. These technologies enable real-time data collection and analysis, facilitating personalized treatment plans and improving diagnostic accuracy. Together innovations can streamline workflows, reduce costs, and ultimately lead to better health outcomes for patients. It is essential to explore how these technologies can be implemented into healthcare. Intelligent Systems and IoT Applications in Clinical Health explores and elucidates the integration of AI, IoT, and blockchain technologies in healthcare. It advances current research by providing comprehensive insights into how these technologies can be leveraged to enhance patient care, improve operational efficiency, and ensure data security. Covering topics such as clinical healthcare, digital health experience, and monitoring systems, this book is an excellent resource for researchers, academicians, medical professionals, medical administrators, educators, graduate and postgraduate students, and more.