Advanced Path Planning for Mobile Entities


Book Description

The book Advanced Path Planning for Mobile Entities provides a platform for practicing researchers, academics, PhD students, and other scientists to design, analyze, evaluate, process, and implement diversiform issues of path planning, including algorithms for multipath and mobile planning and path planning for mobile robots. The nine chapters of the book demonstrate capabilities of advanced path planning for mobile entities to solve scientific and engineering problems with varied degree of complexity.




Adaptive State × Time Lattices: A Contribution to Mobile Robot Motion Planning in Unstructured Dynamic Environments


Book Description

Mobile robot motion planning in unstructured dynamic environments is a challenging task. Thus, often suboptimal methods are employed which perform global path planning and local obstacle avoidance separately. This work introduces a holistic planning algorithm which is based on the concept of state.




STUDY ON COOPERATIVE COLLISION-FREE LOCAL PATH PLANNING FOR WHEELED MOBILE ROBOTS


Book Description

Abstract : Path planning forms the fundamental requirement to facilitate autonomous navigation in Autonomous Vehicles (AVs). Ensuring a cost-efficient, safe, and collision-free path has been the primary objective of most research concerned with path planning. Path planning is accomplished at two levels: global and local. While global path planning can provide reasonable obstacle avoidance in static environments, local path planning or reactive control is better suited to dynamic and fast-changing environments. Integration of the two techniques is also employed to account for either's shortcomings and, hence, enhance the collision avoidance capability and optimal trajectory generation. However, in complex scenarios like constricted spaces or close encounters between agents, even the integrated approaches fail, resulting in a collision or a deadlock. Hence, it necessitates employing cooperative collision avoidance techniques to address these issues and ensure successful, collision-free navigation for AVs. This research's primary objective is to explore a potential solution to enable a cooperative collision avoidance mechanism for autonomous navigation of wheeled mobile robots in a constricted multi-robot environment. This work presents an overview of the current path planners and discusses their limitations. This work studies and explores the capabilities of employing the classic Elastic Band Methods(EBM) path planning technique and Model Predictive Control(MPC) trajectory optimization technique in conjunction to explore the possible cooperative collision avoidance capabilities. Integrating the two and extending the approach to 3D environments forms the basis for our future work.
















Real-time Modification of Collision-free Paths


Book Description

The modification of collision-free paths is proposed as the basis for a new framework to close the gap between global path planning and real-time sensor-based robot control. A physically-based model of a flexible string-like object, called an elastic band, is used to determine the modification of a path. The initial shape of the elastic is the free path generated by a planner. Subjected to artificial forces, the elastic band deforms in real time to a short and smooth path that maintains clearance from the obstacles. The elastic continues to deform as changes in the environment are detected by sensors, enabling the robot to accommodate uncertainties and react to unexpected and moving obstacles. While providing a tight connection between the robot and its environment, the elastic band preserves the global nature of the planned path.