Engineering and Design


Book Description




Hydraulic Design of Stilling Basins and Energy Dissipators


Book Description

Although hundreds of stilling basins and energy­dissipating devices have been designed in conjunction with spillways, outlet works, and canal structures, it is often necessary to make model studies of individual structures to be certain that these will operate as anticipated. The reason for these repetitive tests is that a factor of uncertainty exists regarding the overall performance characteristics of energy dissipators. The many laboratory studies made on individual structures over a period of years have been made by different personnel, for different groups of designers, each structure having different allowable design limitations. Since no two structures were exactly alike, attempts to generalize the assembled data resulted in sketchy and, at times, inconsistent results having only vague connecting links. Extensive library research into the works of others revealed the fact that the necessary correlation factors are nonexistent. To fill the need for up-to-date hydraulic design information on stilling basins and energy dissipators, a research program on this general subject was begun with a study of the hydraulic jump, observing all phases as it occurs in open channel flow. With a broader understanding of this phenomenon it was then possible to proceed to the more practical aspects of stilling basin design. This monograph generalizes the design of stilling basins, energy dissipators of several kinds and associated appurtenances. General design rules are presented so that the necessary dimensions for a particular structure may be easily and quickly determined, and the selected values checked by others without the need for exceptional judgment or extensive previous experience. Proper use of the material in this monograph will eliminate the need for hydraulic model tests on many individual structures, particularly the smaller ones. Designs of structures obtained by following the recommendations presented here will be conservative in that they will provide a desirable factor of safety. However, model studies will still prove beneficial to reduce structure sizes further, to account for nonsymmetrical conditions of approach or getaway, or to evaluate other unusual conditions not described herein.




Hydraulics of Dams and Reservoirs


Book Description




Engineering and Design


Book Description




Hydraulic Engineering of Dams


Book Description

Hydraulic engineering of dams and their appurtenant structures counts among the essential tasks to successfully design safe water-retaining reservoirs for hydroelectric power generation, flood retention, and irrigation and water supply demands. In view of climate change, especially dams and reservoirs, among other water infrastructure, will and have to play an even more important role than in the past as part of necessary mitigation and adaptation measures to satisfy vital needs in water supply, renewable energy and food worldwide as expressed in the Sustainable Development Goals of the United Nations. This book deals with the major hydraulic aspects of dam engineering considering recent developments in research and construction, namely overflow, conveyance and dissipations structures of spillways, river diversion facilities during construction, bottom and low-level outlets as well as intake structures. Furthermore, the book covers reservoir sedimentation, impulse waves and dambreak waves, which are relevant topics in view of sustainable and safe operation of reservoirs. The book is richly illustrated with photographs, highlighting the various appurtenant structures of dams addressed in the book chapters, as well as figures and diagrams showing important relations among the governing parameters of a certain phenomenon. An extensive literature review along with an updated bibliography complete this book.







Advanced Dam Engineering for Design, Construction, and Rehabilitation


Book Description

The present state of the art of dam engineering has been ronmental, and political factors, which, though important, attained by a continuous search for new ideas and methods are covered in other publications. while incorporating the lessons of the past. In the last 20 The rapid progress in recent times has resulted from the years particularly there have been major innovations, due combined efforts of engineers and associated scientists, as largely to a concerted effort to blend the best of theory and exemplified by the authorities who have contributed to this practice. Accompanying these achievements, there has been book. These individuals have brought extensive knowledge a significant trend toward free interchange among the pro to the task, drawn from experience throughout the world. fessional disciplines, including open discussion of prob With the convergence of such distinguished talent, the op lems and their solutions. The inseparable relationships of portunity for accomplishment was substantial. I gratefully hydrology, geology, and seismology to engineering have acknowledge the generous cooperation of these writers, and been increasingly recognized in this field, where progress am indebted also to other persons and organizations that is founded on interdisciplinary cooperation. have allowed reference to their publications; and I have This book presents advances in dam engineering that attempted to acknowledge this obligation in the sections have been achieved in recent years or are under way. At where the material is used. These courtesies are deeply ap tention is given to practical aspects of design, construction, preciated.