Hydrogen in Crystalline Semiconductors


Book Description

vgl. Hardcoverausgabe.




Hydrogen in Semiconductors


Book Description

Hydrogen on semiconductor surfaces has been an area of considerable activity over the last two decades. Structural, thermal, and dynamical properties of hydrogen chemisorbed on crystalline silicon and other semiconductors have been studied in great detail. These properties serve as a reference for related, but more complex systems such as hydrogen at multiple vacancies in crystalline semiconductors or at microvoids in amorphous samples. Interesting from a surface physics point of view is the fact that hydrogen as a monovalent element is an ideal terminator for unsaturated bonds on surfaces and therefore tends to have a large influence on surface reconstruction. A related phenomenon with large technological impact (for example in low cost solar cells) is the passivation of grain boundaries in microcrystalline semiconductors. Finally, hydrogenated semiconductor surfaces always appear as a boundary layer during low-energy hydrogenation of bulk semiconductors, so that a complete description of hydrogen uptake or desorption necessarily has to take these surfaces into account. This collection of invited and contributed papers has been carefully balanced to deal with amorphous and crystalline semiconductors and surfaces and presents basic and experimental work (basic and applied) as well as theory. The resulting volume presents a summary of the state-of-the-art in the field of hydrogen in semiconductors and will hopefully stimulate future work in this area.




Hydrogen in Semiconductors


Book Description

Hydrogen plays an important role in silicon technology, having a profound effect on a wide range of properties. Thus, the study of hydrogen in semiconductors has received much attention from an interdisciplinary assortment of researchers. This sixteen-chapter volume provides a comprehensive review of the field, including a discussion of hydrogenation methods, the use of hydrogen to passivate defects, the use of hydrogen to neutralize deep levels, shallow acceptors and shallow donors in silicon, vibrational spectroscopy, and hydrogen-induced defects in silicon. In addition to this detailed coverage of hydrogen in silicon, chapters are provided that discuss hydrogen-related phenomena in germanium and the neutralization of defects and dopants in III*b1V semiconductors. Provides the most in-depth coverage of hydrogen in silicon available in a single source**Includes an extensive chapter on the neutralization of defects in III*b1V semiconductors**Combines both experimental and theoretical studies to form a comprehensive reference




Hydrogen in Semiconductors II


Book Description

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. - Provides the most in-depth coverage of hydrogen in silicon available in a single source - Includes an extensive chapter on the neutralization of defects in III*b1V semiconductors - Combines both experimental and theoretical studies to form a comprehensive reference




Ii-Vi Semiconductor Blue/Green Light Emitters


Book Description

This volume provides one of the first comprehensive reviews combining recent breakthroughs in blue/green semiconductor lasers based on II-VI materials and fundamentally important issues about the development and extension of these lasers to commercial applications. These lasers are on the cutting-edge of technology and could revolutionize areas such as optical information storage and color displays in the next few years.An important focus of this book is on the recent laboratory development of an entirely new class of diode lasers, based on a different family of semiconductor materials, which emit at much shorter wavelengths in the green and blue portion of the spectrum.These new and exciting developments in optoelectronics, which are still undergoing laboratory testing, have the potential of providing a major increase in storage capacity over current CD technology.Besides applications in high-density digital optical storage, other possible aplications for the compact blue-green lasers will be in areas ranging from flat panel displays to multicolor printing to medical diagnostics. - Details practical issues of the growth of laser structures by molecular beam epitaxy by pioneers in the industry - Explains how the barriers of doping and electrical contact were overcome by using wide bandgap II-VI semiconductors - Documents thirty years of research




Semiconductor Nanowires I: Growth and Theory


Book Description

Semiconductor Nanowires: Part A, Number 93 in the Semiconductor and Semimetals series, focuses on semiconductor nanowires. - Contains comments from leading contributors in the field semiconductor nanowires - Provides reviews of the most important recent literature - Presents a broad view, including an examination of semiconductor nanowires - Comprises up to date advancements in the technological development of nanowire devices and systems, and is comprehensive enough to be used as a reference book on nanowires as well as a graduate student text book




Semiconductor Nanowires II: Properties and Applications


Book Description

Semiconductor Nanowires: Part B, and Volume 94 in the Semiconductor and Semimetals series, focuses on semiconductor nanowires. - Includes experts contributors who review the most important recent literature - Contains a broad view, including examination of semiconductor nanowires




Protons And Muons In Materials Science


Book Description

The use of positive muons to simulate protons in solids is a relatively new, but already successful field of research, which exploits the unique properties of the muon. This book is a collection of papers for special issues of the Philosophical Magazine Part B and the Philosophical Magazine Transactions A, together with previously unreleased material presented at a seminar on the subject. The 30 papers here are written by an international team of experts who effectively cover both the theoretical and experimental aspects of the subject.







The Spectroscopy of Semiconductors


Book Description

Spectroscopic techniques are among the most powerful characterization methods used to study semiconductors. This volume presents reviews of a number of major spectroscopic techniques used to investigate bulk and artificially structured semiconductors including: photoluminescence, photo-reflectance, inelastic light scattering, magneto-optics, ultrafast work, piezo-spectroscopy methods, and spectroscopy at extremely low temperatures and high magnetic fields. Emphasis is given to major semiconductor systems, and artificially structured materials such as GaAs, InSb, Hg1-xCdxTe and MBE grown structures based upon GaAs/AlGaAs materials. Both the spectroscopic novice and the expert will benefit from the descriptions and discussions of the methods, principles, and applications relevant to today's semiconductor structures.Key Features* Discusses the latest advances in spectroscopic techniques used to investigate bulk and artificially structured semiconductors* Features detailed review articles which cover basic principles* Highlights specific applications such as the use of laser spectroscopy for the characterization of GaAs quantum well structures