Hydrogen Molecular Biology and Medicine


Book Description

This book provides a clearly structured introduction to hydrogen biology and medicine. Hydrogen is the one of the most abundant elements in the universe and has the simplest structure. In 2007, Japanese researchers found that the selective oxidation of hydrogen has a therapeutic effect on various diseases and injuries, sparking widespread interest in the biomedical field. In recent years, hundreds of peer-reviewed papers have been published internationally reporting the positive effects of hydrogen on many human diseases, including strokes, diabetes, Parkinson's disease, Alzheimer's disease and sepsis. The authors provide readers with a comprehensive overview of this subject, from its physical and chemical properties to its biological effects, as well as the problems and obstacles that exist.




Molecular Hydrogen for Medicine


Book Description

This book provides a comprehensive account of the current status of molecular hydrogen medicine, a young field that emerged with the discovery that inhalation of hydrogen gas leads to the elimination of harmful reactive oxygen species in rats. Various physiologic effects have since been demonstrated, and possible medical applications identified. Numerous clinical projects have now been undertaken, yielding startling results. Despite this, molecular hydrogen medicine remains underappreciated among the medical community at large. The author aims to rectify this situation by fairly but critically evaluating the potential clinical benefits based on the latest scientific research. In addition, the observed physiological effects of hydrogen gas are considered within the broad context of the evolution of life on earth, offering new perspectives and helping to place molecular hydrogen medicine legitimately within the framework of life sciences. Written in an accessible manner, the book will be of value to students, researchers, clinicians, and the general public.




Optical Interferometry for Biology and Medicine


Book Description

This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of incoherent and heterogeneous backgrounds. Optical Interferometry for Biology and Medicine is divided into four sections. The first covers fundamental principles, and the next three move up successive scales, beginning with molecular interferometry (biosensors), moving to cellular interferometry (microscopy), and ending with tissue interferometry (biomedical). An outstanding feature of the book is the clear presentation of the physics, with easy derivations of the appropriate equations, while emphasizing "rules of thumb" that can be applied by experimental researchers to give semi-quantitative predictions.







Inflammation and Cancer


Book Description

This volume examines in detail the role of chronic inflammatory processes in the development of several types of cancer. Leading experts describe the latest results of molecular and cellular research on infection, cancer-related inflammation and tumorigenesis. Further, the clinical significance of these findings in preventing cancer progression and approaches to treating the diseases are discussed. Individual chapters cover cancer of the lung, colon, breast, brain, head and neck, pancreas, prostate, bladder, kidney, liver, cervix and skin as well as gastric cancer, sarcoma, lymphoma, leukemia and multiple myeloma.




Molecular Basis of Health and Disease


Book Description

The book describes how the balance between pro- and anti-inflammatory molecules is related to health and disease. It is suggested that many diseases are initiated and their progress is influenced by inflammatory molecules and a decrease in the production and/or action of anti-inflammatory molecules and this imbalance between pro- and anti-inflammatory molecules seems to have been initiated in the perinatal period. This implies that strategies to prevent and manage various adult diseases should start in the perinatal period. An alteration in the metaolism of essential fatty acids and their anti-inflammatory molecules such as lipoxins, resolvins, protecitns, maresins and nitrolipids seems to play a major role in the pathobiology of several adult diseases. Based on these concepts, novel therapeutic approaches in the management of insulin resistance, obesity, type 2 diabetes mellitus, metabolic syndrome, cancer, lupus, rheumatoid arthritis and other auto-immune diseases are presented. Based on all these evidences, a unified concept that several adult diseases are due to an alteration in the balance between pro- and anti-inflammatory molecules is discussed and novel methods of their management are presented.




Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine


Book Description

This book is not intended to be a basic text in infrared spectroscopy. Many such books exist and I have referred to them in the text. Rather, I have tried to find applications that would be interesting to a variety of people: advanced undergraduate chemistry students, graduate students and research workers in several disciplines, spectros copists, and physicians active in research or in the practice of medicine. With this aim in mind there was no intent to have exhaustive coverage of the literature. I should like to acknowledge my use of several books and reviews, which were invaluable in my search for material: G. H. Beaven, E. A. Johnson, H. A. Willis and R. G. 1. Miller, Molecular Spec troscopy, Heywood and Company, Ltd., London, 1961. J. A. Schell man and Charlotte Schellman, 'The Conformation of Polypeptide Chains in Proteins," in The Proteins, Vol. II, 2nd Ed. (H. Neurath, ed.), Academic Press, New York, 1964. R. T. O'Connor, "Application of Infrared Spectrophotometry to Fatty Acid Derivatives," J. Am. Oil Chemists' Soc. 33, 1 (1956). F. L. Kauffman, "Infrared Spectroscopy of Fats and Oils," J. Am. Oil Chemists' Soc. 41,4 (1964). W. J. Potts, Jr., Chemical Infrared Spectroscopy, Vol. I, Techniques, Wiley, New York, 1963. R. S. Tipson, Infrared Spectroscopy of Carbohydrates, National Bureau of Standards Monograph llO, Washington, D.C., 1968. C. N. R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York, 1963.




Concepts of Biology


Book Description

Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.




Phase Transitions in Cell Biology


Book Description

Phase transitions occur throughout nature. The most familiar example is the one that occurs in water – the abrupt, discontinuous transition from a liquid to a gas or a solid, induced by a subtle environmental change. Practically magical, the ever-so-slight shift of temperature or pressure can induce an astonishing transition from one entity to another entity that bears little resemblance to the first. So "convenient" a feature is seen throughout the domains of physics and chemistry, and one is therefore led to wonder whether it might also be common to biology. Indeed, many of the most fundamental cellular processes are arguably attributable to radical structural shifts triggered by subtle changes that cross a critical threshold. These processes include transport, motion, signaling, division, and other fundamental aspects of cellular function. Largely on the basis of this radical concept, a symposium was organized in Poitiers, France, to bring together people who have additional evidence for the role of phase transitions in biology, and this book is a compendium of some of the more far-reaching of those presentations, as well as several others that seemed to the editors to be compelling. The book should be suitable for anyone interested in the nature of biological function, particularly those who tire of lumbering along well trodden pathways of pursuit, and are eager to hear something fresh. The book is replete with fresh interpretations of familiar phenomena, and should serve as an excellent gateway to deeper understanding.




Biomolecular Interfaces


Book Description

The book focuses on the aqueous interface of biomolecules, a vital yet overlooked area of biophysical research. Most biological phenomena cannot be fully understood at the molecular level without considering interfacial behavior. The author presents conceptual advances in molecular biophysics that herald the advent of a new discipline, epistructural biology, centered on the interactions of water and bio molecular structures across the interface. The author introduces powerful theoretical and computational resources in order to address fundamental topics such as protein folding, the physico-chemical basis of enzyme catalysis and protein associations. On the basis of this information, a multi-disciplinary approach is used to engineer therapeutic drugs and to allow substantive advances in targeted molecular medicine. This book will be of interest to scientists, students and practitioners in the fields of chemistry, biophysics and biomedical engineering.