Debris-flow Hazards and Related Phenomena


Book Description

With climate change and deforestation, debris flows and debris avalanches have become the most significant landslide hazards in many countries. In recent years there have been numerous debris flow avalanches in Southern Europe, South America and the Indian Subcontinent, resulting in major catastrophes and large loss of life. This is therefore a major high-profile problem for the world's governments and for the engineers and scientists concerned. Matthias Jakob and Oldrich Hungr are ideally suited to edit this book. Matthias Jakob has worked on debris flow for over a decade and has had numerous papers published on the topic, as well as working as a consultant on debris flow for municipal and provincial governments. Oldrich Hungr has worked on site investigations on debris flow, avalanches and rockfall, with emphasis on slope stability analysis and evaluation of risks to roads in built-up areas. He has also developed mathematical models for landslide dynamic analysis. They have invited world-renowned experts to joint them in this book.




Ecological Responses at Mount St. Helens: Revisited 35 years after the 1980 Eruption


Book Description

This book builds on existing work exploring succession, disturbance ecology, and the interface between geophysical and biological systems in the aftermath of the 1980 eruptions of Mount St. Helens. The eruption was dramatic both in the spatial extent of impacts and the range of volcanic disturbance types and intensities. Complex geophysical forces created unparalleled opportunities to study initial ecological responses and long-term succession processes that occur in response to a major contemporary eruption across a great diversity of ecosystems—lowland to alpine forests, meadows, lakes, streams, and rivers. These factors make Mount St. Helens an extremely rich environment for learning about the ecology of volcanic areas and, more generally, about ecosystem response to major disturbance of many types, including land management. Lessons about ecological recovery at Mount St. Helens are shaping thought about succession, disturbance ecology, ecosystem management, and landscape ecology. In the first five years after the eruption several syntheses documented the numerous, intensive studies of ecological recovery. The 2005 volume “Ecological Responses to the 1980 Eruption of Mount St. Helens” (Springer Publishing) was the first ecological synthesis since 1987 of the scores of ecological studies underway in the area. More than half of the world’s published studies on plant and animal responses to volcanic eruptions have taken place at Mount St. Helens. The 25-year synthesis, which generally included investigations (i.e., data) from 1980-2000, made it possible to more thoroughly analyze initial stages of ecological responses and to test the validity of early interpretations and the duration of early phenomena. And 35 years after the eruption, it is time for many of the scientists working in the first three-decade, post-eruption period to pass the science baton to the next generation of scientists to work at Mount St. Helens, and a synt hesis a t this time of transfer of responsibility to a younger cohort of scientists will be an enormous asset to the continuation of work at the volcano.







Western Cordillera and Adjacent Areas


Book Description

This title includes guides for field trips held in conjunction with the 2003 GSA Annual Meeting in Seattle. Topics covered include Glacial Lake Missoula and the Clark Fork Ice Dam; the Sauk Sequence in Utah; the geology of wine in Washington state; the Columbia River basalt and Yakima Fold Belt; Alpine glaciation of the North Cascades; and recent geoarchaeological discoveries in central Washington. Quaternary geology of Seattle, engineering geology in the central Columbia Valley, and the tephrostratigraphy and paleogeography of southern Puget Sound are also covered.




MOUNTAIN GEOMORPHOLOGY


Book Description

Mountains represent one of the most inspiring and attractive natural features on the surface of the earth. Visually, they dominate the landscape. However, the increasing realization of the fragility of mountain areas because of changes in land use, management and climate, combined with an understanding of their importance for water and other natural resources, has resulted in a growing interest in mountain environments in recent years. Hence, Mountain Geomorphology represents a timely and unique contribution to the literature. Written by a team of international experts, this book is divided into three sections, which consider historical, functional and applied mountain geomorphology from both global and local perspectives. Historical mountain geomorphology focuses on the evolution of landforms. Functional mountain geomorphology emphasises the interaction between processes and landforms, while applied mountain geomorphology concerns the interrelationships between geomorphological processes and society. Mountain Geomorphology is a valuable source of information for students studying mountain geomorphology, and also for academics and research scientists interested in mountain environments.