Hydrological Drought


Book Description

The majority of the examples are taken from regions where the rivers run most of the year.




Extreme Hydrology and Climate Variability


Book Description

Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology Discusses extreme event management, including adaption and mitigation




Towards Improving Drought Forecasts Across Different Spatial and Temporal Scales


Book Description

The post-processing technique is then expanded to exclusively study the drought forecasts across the different spatial and temporal scales. In the proposed drought forecasting model, the drought status in the future is evaluated based on the drought status of the past seasons while the correlations between the drought variables of consecutive seasons are preserved by copula functions. The main benefit of the new forecast model is its probabilistic features in analyzing future droughts. It develops conditional probability of drought status in the forecast season and generates the PDF and cumulative distribution function (CDF) of future droughts given the past status. The conditional PDF can return the highest probable drought in the future along with an assessment of the uncertainty around that value. Using the conditional CDF for forecast season, the model can generate the maps of drought status across the basin with particular chance of occurrence in the future. In a different analysis of the conditional CDF developed for the forecast season, the chance of a particular drought in the forecast period can be approximated given the drought status of earlier seasons. The forecast methodology developed in this study shows promising results in hydrologic forecasts and its particular probabilistic features are inspiring for future studies.




Spatio-Temporal Drought Characterization and Forecasting Using Indices and Artificial Neural Networks. A Case of the Upper Tana River Basin, Kenya


Book Description

Doctoral Thesis / Dissertation from the year 2016 in the subject Engineering - Civil Engineering, grade: 80.0, Egerton University, course: AGRICULTURAL ENGINEERING, language: English, abstract: Drought is a critical stochastic natural disaster that adversely affects water resources, ecosystems and people. Drought is a condition characterized by scarcity of precipitation and/or water quantity that negatively affects the global, regional and local land-scales. At both global and regional scales, drought frequency and severity have been increasing leading to direct and indirect decline in water resources. Increase in drought severity and frequency in the upper Tana River basin, Kenya, water resources systems have been adversely affected. Timely detection and forecasting of drought is crucial in planning and management of water resources. The main objective of this research was to formulate the most appropriate models for assessment and forecasting of drought using Indices and Artificial Neural Networks (ANNs) for the basin. Hydro-meteorlogical data for the period 1970-2010 at sixteen hydrometric stations was used to test the performance of the indices in forecasting of the future drought at 1, 3, 6, 9, 12, 18 and 24-months lead times, by constructing ANN models with different time delays. Drought conditions at monthly temporal resolution were evaluated using selected drought indices. The occurrence of drought was investigated using non-parametric Man-kendall trend test. Spatial distribution of drought severity was determined using Kriging interpolation techinique. In addition, a standard Nonlinear-Integrated Drought Index (NDI), for drought forecasting in the basin was developed using hydro-meteoroogical data for the river basin. The results of spaial drought show that the south-eastern parts of the basin are more prone to drought risks than the north-western areas. The Mann-Kendall trend test indicates an increasing drought trend in the south-eastern and no trend in north-western areas of the basin. Development of Surface Water Supply Index (SWSI) function, NDI and characteristic curves defining the return period and the probability of different drought magnitudes based on Drought Indices (DIs) was achieved. Drought Severity-Duration-Frequency (SDF) curves were developed. The formulated NDI tool can be adopted for a synchronized assessment and forecasting of all the three operational drought types in the basin. The results can be used in assisting water resources managers for timely detection and forecasting of drought conditions in prioritized planning of drought preparedness and early warning systems.




Drought


Book Description

First Published in 2011. Routledge is an imprint of Taylor & Francis, an informa company.




Spatio-temporal characterisation of drought: data analytics, modelling, tracking, impact and prediction


Book Description

Studies of drought have increased in light of new data availability and advances in spatio-temporal analysis. However, the following gaps still need to be filled: 1) methods to characterise drought that explicitly consider its spatio-temporal features, such as spatial extent (area) and pathway; 2) methods to monitor and predict drought that include the above-mentioned characteristics and 3) approaches for visualising and analysing drought characteristics to facilitate interpretation of its variation. This research aims to explore, analyse and propose improvements to the spatio-temporal characterisation of drought. Outcomes provide new perspectives towards better prediction. The following objectives were proposed. 1) Improve the methodology for characterising drought based on the phenomenon’s spatial features. 2) Develop a visual approach to analysing drought variations. 3) Develop a methodology for spatial drought tracking. 4) Explore machine learning (ML) techniques to predict crop-yield responses to drought. The four objectives were addressed and results are presented. Finally, a scope was formulated for integrating ML and the spatio-temporal analysis of drought. Proposed scope opens a new area of potential for drought prediction (i.e. predicting spatial drought tracks and areas). It is expected that the drought tracking and prediction method will help populations cope with drought and its severe impacts.




Remote Sensing of Drought


Book Description

Remote Sensing of Drought: Innovative Monitoring Approaches presents emerging remote sensing-based tools and techniques that can be applied to operational drought monitoring and early warning around the world. The first book to focus on remote sensing and drought monitoring, it brings together a wealth of information that has been scattered throughout the literature and across many disciplines. Featuring contributions by leading scientists, it assembles a cross-section of globally applicable techniques that are currently operational or have potential to be operational in the near future. The book explores a range of applications for monitoring four critical components of the hydrological cycle related to drought: vegetation health, evapotranspiration, soil moisture and groundwater, and precipitation. These applications use remotely sensed optical, thermal, microwave, radar, and gravity data from instruments such as AMSR-E, GOES, GRACE, MERIS, MODIS, and Landsat and implement several advanced modeling and data assimilation techniques. Examples show how to integrate this information into routine drought products. The book also examines the role of satellite remote sensing within traditional drought monitoring, as well as current challenges and future prospects. Improving drought monitoring is becoming increasingly important in addressing a wide range of societal issues, from food security and water scarcity to human health, ecosystem services, and energy production. This unique book surveys innovative remote sensing approaches to provide you with new perspectives on large-area drought monitoring and early warning.







Climate Change and Water Resources in Africa


Book Description

The focus of this book is on the key water-related vulnerabilities to climate change in Africa, particularly in its most vulnerable areas, exploring potential management responses to such vulnerabilities. The African countries are particularly exposed and vulnerable to the negative impacts of climate change, with important impacts on water resources and hydrological systems, water availability, water resource management and sea level variations. Already, under various anthropogenic pressures, the status of water resources in Africa has been changing over the past decades, with decreasing water quality, falling groundwater levels, and variability in rainfall, both in terms of timing and intensity. Climate change will further accelerate the rate of change, affecting the ability of people and societies to respond in a timely manner. It is clear that there is no quick fix to the pressures imposed on water resources by climate change. Increasing the resilience of ecosystems and communities to extreme events such as flooding and drought, and integrating climate change risks and opportunities into development decision-making is indeed a key challenge, as much a technical climate-change one, as a political and developmental challenge. The book, in this regard, intends to contribute to the debate around climate change in relation to water resources management in Africa, and in particular inform policy decisions and actions that will improve governments’ and communities’ ability to manage the challenges of climate change and variability in relation to the aquatic ecosystems that they depend on. The knowledge collected in this book will benefit policy makers, researchers, as well as other stakeholders.