Hyperbolic Problems: Contributed talks


Book Description

The International Conference on Hyperbolic Problems: Theory, Numerics and Applications, ``HYP2008'', was held at the University of Maryland from June 9-13, 2008. This was the twelfth meeting in the bi-annual international series of HYP conferences which originated in 1986 at Saint-Etienne, France, and over the last twenty years has become one of the highest quality and most successful conference series in Applied Mathematics. This book, the second in a two-part volume, contains more than sixty articles based on contributed talks given at the conference. The articles are written by leading researchers as well as promising young scientists and cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ``hyperbolic PDEs''. This volume will bring readers to the forefront of research in this most active and important area in applied mathematics.




Hyperbolic Problems


Book Description

'The International Conference on Hyperbolic Problems: Theory, Numerics and Applications', 'HYP2008', was held at the University of Maryland from June 9-14, 2008. This title contains articles that cover a range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of 'hyperbolic PDEs'.




Hyperbolic Problems: Theory, Numerics, Applications


Book Description

The International Conference on "Hyperbolic Problems: Theory, Numerics and Applications'' was held in CalTech on March 25-30, 2002. The conference was the ninth meeting in the bi-annual international series which became one of the highest quality and most successful conference series in Applied mathematics. This volume contains more than 90 contributions presented in this conference, including plenary presentations by A. Bressan, P. Degond, R. LeVeque, T.-P. Liu, B. Perthame, C.-W. Shu, B. Sjögreen and S. Ukai. Reflecting the objective of series, the contributions in this volume keep the traditional blend of theory, numerics and applications. The Hyp2002 meeting placed a particular emphasize on fundamental theory and numerical analysis, on multi-scale analysis, modeling and simulations, and on geophysical applications and free boundary problems arising from materials science and multi-component fluid dynamics. The volume should appeal to researchers, students and practitioners with general interest in time-dependent problems governed by hyperbolic equations.




Strengthening Forensic Science in the United States


Book Description

Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.




Proceedings of the Conference on Promoting Undergraduate Research in Mathematics


Book Description

Descriptions of summer research programs: The AIM REU: Individual projects with a common theme by D. W. Farmer The Applied Mathematical Sciences Summer Institute by E. T. Camacho and S. A. Wirkus Promoting research and minority participantion via undergraduate research in the mathematical sciences. MTBI/SUMS-Arizona State University by C. Castillo-Chavez, C. Castillo-Garsow, G. Chowell, D. Murillo, and M. Pshaenich Summer mathematics research experience for undergraduates (REU) at Brigham Young University by M. Dorff Introducing undergraduates for underrepresented minorities to mathematical research: The CSU Channel Islands/California Lutheran University REU, 2004-2006 by C. Wyels The REUT and NREUP programs at California State University, Chico by C. M. Gallagher and T. W. Mattman Undergraduate research at Canisius. Geometry and physics on graphs, summer 2006 by S. Prassidis The NSF REU at Central Michigan University by S. Narayan and K. Smith Claremont Colleges REU, 2005-07 by J. Hoste The first summer undergraduate research program at Clayton State University by A. Lanz Clemson REU in computational number theory and combinatorics by N. Calkin and K. James Research with pre-mathematicians by C. R. Johnson Traditional roots, new beginnings: Transitions in undergraduate research in mathematics at ETSU by A. P. Godbole Undergraduate research in mathematics at Grand Valley State University by S. Schlicker The Hope College REU program by T. Pennings The REU experience at Iowa State University by L. Hogben Lafayette College's REU by G. Gordon LSU REU: Graphs, knots, & Dessins in topology, number theory & geometry by N. W. Stoltzfus, R. V. Perlis, and J. W. Hoffman Mount Holyoke College mathematics summer research institute by M. M. Robinson The director's summer program at the NSA by T. White REU in mathematical biology at Penn State Erie, The Behrend College by J. P. Previte, M. A. Rutter, and S. A. Stevens The Rice University Summer Institute of Statistics (RUSIS) by J. Rojo The Rose-Hulman REU in mathematics by K. Bryan The REU program at DIMACS/Rutgers University by B. J. Latka and F. S. Roberts The SUNY Potsdam-Clarkson University REU program by J. Foisy The Trinity University research experiences for undergraduates in mathematics program by S. Chapman Undergraduate research in mathematics at the University of Akron by J. D. Adler The Duluth undergraduate research program 1977-2006 by J. A. Gallian Promoting undergraduate research in mathematics at the University of Nebraska-Lincoln by J. L. Walker, W. Ledder, R. Rebarber, and G. Woodward REU site: Algorithmic combinatorics on words by F. Blanchet-Sadri Promoting undergraduate research by T. Aktosun Research experiences for undergraduates inverse problems for electrical networks by J. A. Morrow Valparaiso experiences in research for undergraduates in mathematics by R. Gillman and Z. Szaniszlo Wabash Summer Institute in Algebra (WSIA) by M. Axtell, J. D. Phillips, and W. Turner THe SMALL program at Williams College by C. E. Silva and F. Morgan Industrial mathematics and statistics research for undergraduates at WPI by A. C. Heinricher and S. L. Weekes Descriptions of summer enrichment programs: Twelve years of summer program for women in mathematics-What works and why? by M. M. Gupta Research experience for undergraduates in numerical analysis and scientific computing: An international program by G. Fairweather and B. M. Moskal Articles: The Long-Term Undergraduate Research (LURE) model by S. S. Adams, J. A. Davis, N. Eugene, K. Hoke, S. Narayan, and K. Smith Research with students from underrepresented groups by R. Ashley, A. Ayela-Uwangue, F. Cabrera, C. Callesano, and D. A. Narayan Research classes at Gettysburg College by B. Bajnok Research in industrial projects for students: A unique undergraduate experience by S. Beggs What students say about their REU experience by F. Connolly and J. A. Gallian Diversity issues in undergraduate research by R. Cortez, D. Davenport, H




A Mathematical Gift, III


Book Description

This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, ""Mathematical World"".




Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws


Book Description

In January 2012 an Oberwolfach workshop took place on the topic of recent developments in the numerics of partial differential equations. Focus was laid on methods of high order and on applications in Computational Fluid Dynamics. The book covers most of the talks presented at this workshop.




An Introduction to the Theory of Functional Equations and Inequalities


Book Description

Marek Kuczma was born in 1935 in Katowice, Poland, and died there in 1991. After finishing high school in his home town, he studied at the Jagiellonian University in Kraków. He defended his doctoral dissertation under the supervision of Stanislaw Golab. In the year of his habilitation, in 1963, he obtained a position at the Katowice branch of the Jagiellonian University (now University of Silesia, Katowice), and worked there till his death. Besides his several administrative positions and his outstanding teaching activity, he accomplished excellent and rich scientific work publishing three monographs and 180 scientific papers. He is considered to be the founder of the celebrated Polish school of functional equations and inequalities. "The second half of the title of this book describes its contents adequately. Probably even the most devoted specialist would not have thought that about 300 pages can be written just about the Cauchy equation (and on some closely related equations and inequalities). And the book is by no means chatty, and does not even claim completeness. Part I lists the required preliminary knowledge in set and measure theory, topology and algebra. Part II gives details on solutions of the Cauchy equation and of the Jensen inequality [...], in particular on continuous convex functions, Hamel bases, on inequalities following from the Jensen inequality [...]. Part III deals with related equations and inequalities (in particular, Pexider, Hosszú, and conditional equations, derivations, convex functions of higher order, subadditive functions and stability theorems). It concludes with an excursion into the field of extensions of homomorphisms in general." (Janos Aczel, Mathematical Reviews) "This book is a real holiday for all the mathematicians independently of their strict speciality. One can imagine what deliciousness represents this book for functional equationists." (B. Crstici, Zentralblatt für Mathematik)




Cohomological and Geometric Approaches to Rationality Problems


Book Description

Rationality problems link algebra to geometry, and the difficulties involved depend on the transcendence degree of $K$ over $k$, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. Such advances has led to many interdisciplinary applications to algebraic geometry. This comprehensive book consists of surveys of research papers by leading specialists in the field and gives indications for future research in rationality problems. Topics discussed include the rationality of quotient spaces, cohomological invariants of quasi-simple Lie type groups, rationality of the moduli space of curves, and rational points on algebraic varieties. This volume is intended for researchers, mathematicians, and graduate students interested in algebraic geometry, and specifically in rationality problems. Contributors: F. Bogomolov; T. Petrov; Y. Tschinkel; Ch. Böhning; G. Catanese; I. Cheltsov; J. Park; N. Hoffmann; S. J. Hu; M. C. Kang; L. Katzarkov; Y. Prokhorov; A. Pukhlikov




Ubiquitous Computing Fundamentals


Book Description

"...a must-read text that provides a historical lens to see how ubicomp has matured into a multidisciplinary endeavor. It will be an essential reference to researchers and those who want to learn more about this evolving field." -From the Foreword, Professor Gregory D. Abowd, Georgia Institute of Technology First introduced two decades ago, the term ubiquitous computing is now part of the common vernacular. Ubicomp, as it is commonly called, has grown not just quickly but broadly so as to encompass a wealth of concepts and technology that serves any number of purposes across all of human endeavor. While such growth is positive, the newest generation of ubicomp practitioners and researchers, isolated to specific tasks, are in danger of losing their sense of history and the broader perspective that has been so essential to the field’s creativity and brilliance. Under the guidance of John Krumm, an original ubicomp pioneer, Ubiquitous Computing Fundamentals brings together eleven ubiquitous computing trailblazers who each report on his or her area of expertise. Starting with a historical introduction, the book moves on to summarize a number of self-contained topics. Taking a decidedly human perspective, the book includes discussion on how to observe people in their natural environments and evaluate the critical points where ubiquitous computing technologies can improve their lives. Among a range of topics this book examines: How to build an infrastructure that supports ubiquitous computing applications Privacy protection in systems that connect personal devices and personal information Moving from the graphical to the ubiquitous computing user interface Techniques that are revolutionizing the way we determine a person’s location and understand other sensor measurements While we needn’t become expert in every sub-discipline of ubicomp, it is necessary that we appreciate all the perspectives that make up the field and understand how our work can influence and be influenced by those perspectives. This is important, if we are to encourage future generations to be as successfully innovative as the field’s originators.