Hyperbolic Triangle Centers


Book Description

After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates are related to the Newtonian mass, barycentric coordinates are related to the Einsteinian relativistic mass in hyperbolic geometry. Contrary to general belief, Einstein’s relativistic mass hence meshes up extraordinarily well with Minkowski’s four-vector formalism of special relativity. In Euclidean geometry, barycentric coordinates can be used to determine various triangle centers. While there are many known Euclidean triangle centers, only few hyperbolic triangle centers are known, and none of the known hyperbolic triangle centers has been determined analytically with respect to its hyperbolic triangle vertices. In his recent research, the author set the ground for investigating hyperbolic triangle centers via hyperbolic barycentric coordinates, and one of the purposes of this book is to initiate a study of hyperbolic triangle centers in full analogy with the rich study of Euclidean triangle centers. Owing to its novelty, the book is aimed at a large audience: it can be enjoyed equally by upper-level undergraduates, graduate students, researchers and academics in geometry, abstract algebra, theoretical physics and astronomy. For a fruitful reading of this book, familiarity with Euclidean geometry is assumed. Mathematical-physicists and theoretical physicists are likely to enjoy the study of Einstein’s special relativity in terms of its underlying hyperbolic geometry. Geometers may enjoy the hunt for new hyperbolic triangle centers and, finally, astronomers may use hyperbolic barycentric coordinates in the velocity space of cosmology.




Barycentric Calculus in Euclidean and Hyperbolic Geometry


Book Description

The word barycentric is derived from the Greek word barys (heavy), and refers to center of gravity. Barycentric calculus is a method of treating geometry by considering a point as the center of gravity of certain other points to which weights are ascribed. Hence, in particular, barycentric calculus provides excellent insight into triangle centers. This unique book on barycentric calculus in Euclidean and hyperbolic geometry provides an introduction to the fascinating and beautiful subject of novel triangle centers in hyperbolic geometry along with analogies they share with familiar triangle centers in Euclidean geometry. As such, the book uncovers magnificent unifying notions that Euclidean and hyperbolic triangle centers share. In his earlier books the author adopted Cartesian coordinates, trigonometry and vector algebra for use in hyperbolic geometry that is fully analogous to the common use of Cartesian coordinates, trigonometry and vector algebra in Euclidean geometry. As a result, powerful tools that are commonly available in Euclidean geometry became available in hyperbolic geometry as well, enabling one to explore hyperbolic geometry in novel ways. In particular, this new book establishes hyperbolic barycentric coordinates that are used to determine various hyperbolic triangle centers just as Euclidean barycentric coordinates are commonly used to determine various Euclidean triangle centers. The hunt for Euclidean triangle centers is an old tradition in Euclidean geometry, resulting in a repertoire of more than three thousand triangle centers that are known by their barycentric coordinate representations. The aim of this book is to initiate a fully analogous hunt for hyperbolic triangle centers that will broaden the repertoire of hyperbolic triangle centers provided here.




Barycentric Calculus In Euclidean And Hyperbolic Geometry: A Comparative Introduction


Book Description

The word barycentric is derived from the Greek word barys (heavy), and refers to center of gravity. Barycentric calculus is a method of treating geometry by considering a point as the center of gravity of certain other points to which weights are ascribed. Hence, in particular, barycentric calculus provides excellent insight into triangle centers. This unique book on barycentric calculus in Euclidean and hyperbolic geometry provides an introduction to the fascinating and beautiful subject of novel triangle centers in hyperbolic geometry along with analogies they share with familiar triangle centers in Euclidean geometry. As such, the book uncovers magnificent unifying notions that Euclidean and hyperbolic triangle centers share.In his earlier books the author adopted Cartesian coordinates, trigonometry and vector algebra for use in hyperbolic geometry that is fully analogous to the common use of Cartesian coordinates, trigonometry and vector algebra in Euclidean geometry. As a result, powerful tools that are commonly available in Euclidean geometry became available in hyperbolic geometry as well, enabling one to explore hyperbolic geometry in novel ways. In particular, this new book establishes hyperbolic barycentric coordinates that are used to determine various hyperbolic triangle centers just as Euclidean barycentric coordinates are commonly used to determine various Euclidean triangle centers.The hunt for Euclidean triangle centers is an old tradition in Euclidean geometry, resulting in a repertoire of more than three thousand triangle centers that are known by their barycentric coordinate representations. The aim of this book is to initiate a fully analogous hunt for hyperbolic triangle centers that will broaden the repertoire of hyperbolic triangle centers provided here.




Exploring Advanced Euclidean Geometry with GeoGebra


Book Description

This book provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered include triangle centers, inscribed, circumscribed, and escribed circles, medial and orthic triangles, the nine-point circle, duality, and the theorems of Ceva and Menelaus, as well as numerous applications of those theorems. The final chapter explores constructions in the Poincare disk model for hyperbolic geometry. The book can be used either as a computer laboratory manual to supplement an undergraduate course in geometry or as a stand-alone introduction to advanced topics in Euclidean geometry. The text consists almost entirely of exercises (with hints) that guide students as they discover the geometric relationships for themselves. First the ideas are explored at the computer and then those ideas are assembled into a proof of the result under investigation. The goals are for the reader to experience the joy of discovering geometric relationships, to develop a deeper understanding of geometry, and to encourage an appreciation for the beauty of Euclidean geometry.




Analytic Hyperbolic Geometry


Book Description

This is the first book on analytic hyperbolic geometry, fully analogous to analytic Euclidean geometry. Analytic hyperbolic geometry regulates relativistic mechanics just as analytic Euclidean geometry regulates classical mechanics. The book presents a novel gyrovector space approach to analytic hyperbolic geometry, fully analogous to the well-known vector space approach to Euclidean geometry. A gyrovector is a hyperbolic vector. In the resulting "gyrolanguage" of the book, one attaches the prefix "gyro" to a classical term to mean the analogous term in hyperbolic geometry. The book begins with the definition of gyrogroups, which is fully analogous to the definition of groups. Gyrogroups, both gyrocommutative and nongyrocommutative, abound in group theory. Surprisingly, the seemingly structureless Einstein velocity addition of special relativity turns out to be a gyrocommutative gyrogroup operation. Introducing scalar multiplication, some gyrocommutative gyrogroups of gyrovectors become gyrovector spaces. The latter, in turn, form the setting for analytic hyperbolic geometry just as vector spaces form the setting for analytic Euclidean geometry. By hybrid techniques of differential geometry and gyrovector spaces, it is shown that Einstein (Mobius) gyrovector spaces form the setting for Beltrami-Klein (Poincare) ball models of hyperbolic geometry. Finally, novel applications of Mobius gyrovector spaces in quantum computation, and of Einstein gyrovector spaces in special relativity, are presented.




Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity (Second Edition)


Book Description

This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.




Analytic Hyperbolic Geometry in N Dimensions


Book Description

The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language t




Essays in Mathematics and its Applications


Book Description

This volume, dedicated to the eminent mathematician Vladimir Arnold, presents a collection of research and survey papers written on a large spectrum of theories and problems that have been studied or introduced by Arnold himself. Emphasis is given to topics relating to dynamical systems, stability of integrable systems, algebraic and differential topology, global analysis, singularity theory and classical mechanics. A number of applications of Arnold’s groundbreaking work are presented. This publication will assist graduate students and research mathematicians in acquiring an in-depth understanding and insight into a wide domain of research of an interdisciplinary nature.




Geometry in Action


Book Description

Geometry in Action uses Sketchpad? to awaken student creativity through discovery-based learning. It supplements any college geometry course in which The Geometer's Sketchpad is used. All students must have access to The Geometer's Sketchpad.Each book is packaged with a CD-ROM for students that illustrates what is meant by geometry in action. Students explore 27 sketches prepared by the author to demonstrate Sketchpad's capabilities by dragging points to see shifts in graphs, by animating tesselations to create new patterns, and much, much more! Also included on this CD is the Poincare Disk, a Sketchpad file used to dig deeper into non-Euclidean geometry with The Geometer's Sketchpad.




Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces


Book Description

Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces presents for the first time a unified study of the Lorentz transformation group SO(m, n) of signature (m, n), m, n ? N, which is fully analogous to the Lorentz group SO(1, 3) of Einstein’s special theory of relativity. It is based on a novel parametric realization of pseudo-rotations by a vector-like parameter with two orientation parameters. The book is of interest to specialized researchers in the areas of algebra, geometry and mathematical physics, containing new results that suggest further exploration in these areas. Introduces the study of generalized gyrogroups and gyrovector spaces Develops new algebraic structures, bi-gyrogroups and bi-gyrovector spaces Helps readers to surmount boundaries between algebra, geometry and physics Assists readers to parametrize and describe the full set of generalized Lorentz transformations in a geometric way Generalizes approaches from gyrogroups and gyrovector spaces to bi-gyrogroups and bi-gyrovector spaces with geometric entanglement