Effective Field Theories For Nuclei And Compact-star Matter: Chiral Nuclear Dynamics (Cnd-iii)


Book Description

Effective field theories have been widely used in nuclear physics. This volume is devoted to exploring the intricate structure of compact-star matter inaccessible directly from QCD. It is principally anchored on hidden symmetries and topology presumed to be encoded in QCD. It differs from standard effective field theory and energy density functional approaches in that it exploits renormalization-group flow in the complex 'vacuum' sliding with density inferred from topology change identified as a manifestation of baryon-quark continuity in dense matter. It makes a variety of predictions that drastically differ from the conventional treatments that could be tested by upcoming terrestrial and astrophysical experiments.This monograph recounts how to go, in one unique field theoretic formalism in terms of hadronic degrees of freedom, from finite nuclei to dense compact-star matter that could be explored in RIB-type machines in nuclear physics as well as in LIGO-type gravity waves in astrophysics.







The Euroschool on Exotic Beams - Vol. 5


Book Description

This is the fifth volume in a series of Lecture Notes based on the highly successful Euro Summer School on Exotic Beams. The aim of these notes is to provide a thorough introduction to radioactive ion-beam physics at the level of graduate students and young postdocs starting out in the field. Each volume covers a range of topics from nuclear theory to experiment and applications. Vol I has been published as LNP 651, Vol II as LNP 700, Vol. III as LNP 764 and Vol. IV as LNP 879.




Recent Progress in Few-Body Physics


Book Description

Few-body physics covers a rich and wide variety of phenomena, ranging from the very lowest energy scales of atomic and molecular physics to high-energy particle physics. The papers contained in the present volume provide an apercu of recent progress in the field from both the theoretical and experimental perspectives and are based on work presented at the “22nd International Conference on Few-Body Problems in Physics”. This book is geared towards academics and graduate students involved in the study of systems which present few-body characteristics and those interested in the related mathematical and computational techniques.




Supernovae, Neutron Star Physics and Nucleosynthesis


Book Description

This book deals with the interdisciplinary areas of nuclear physics, supernovae and neutron star physics. It addresses the physics and astrophysics of the spectacular supernova explosions, starting with the collapse of massive stars and ending with the birth of neutron stars or black holes. Recent progress in the understanding of core collapse supernova (CCSN) and observational aspects of future detections of neutrinos from CCSN explosions are discussed. The other main focus in this text is the novel phases of dense nuclear matter, its compositions and equation of state (EoS) from low to very high baryon density relevant to supernovae and neutron stars. The multi-messenger astrophysics of binary neutron star merger GW170817 and its relation to EoS through tidal deformability are also presented in detail. The synthesis of elements heavier than iron in the supernova and neutron star environment by the rapid (r)-process are treated here with special emphasis on the nucleosynthesis in the ejected material from GW170817. This monograph is written for graduate students and researchers in the field of nuclear astrophysics.




Chemical Abstracts


Book Description







Progress in Neutron Star Research


Book Description

Neutron stars are the collapsed cores of some massive stars. They pack roughly the mass of our Sun into a region the size of a city. Neutron stars are believed to form in supernovae such as the one that formed the Crab Nebula. The stars that eventually become neutron stars are thought to start out with about 15 to 30 times the mass of our sun. It appears that for initial masses much less than 15 solar masses the star becomes a white dwarf, whereas for initial masses a lot higher than 30 solar masses a black hole results instead. It is estimated that there are 108 neutron stars in our galaxy. About 1000 of these have actually been observed by astronomers so far. This new book presents recent and important research results in the field.




Strangeness and Spin in Fundamental Physics


Book Description

Presents discussion of the role played by two subtle and somehow puzzling quantum numbers, the strangeness and the spin, in fundamental physics.




Particle and Nuclear Physics


Book Description

Progress in Particle and Nuclear Physics, Volume 26 covers the significant advances in understanding the fundamentals of particle and nuclear physics. This volume is divided into four chapters, and begins with a brief overview of the various possible ideas beyond the standard model, the problem they address and their experimental tests. The next chapter deals with the basic physics of neutrino mass based on from a gauge theoretic point of view. This chapter considers the various extensions of the standard electroweak theory, along with their implications for neutrino physics. The discussion then shifts to the principles of slow neutrons and their fundamental interactions, as well as some slow neutron experiments. The final chapter surveys the role of strangeness in the context of dense hadronic matter, including strangeness as a probe of the dynamics of relativistic heavy ion collisions and its importance in astrophysics. This book will prove useful to physicists and allied scientists.