Hyperspectral Image Unmixing Incorporating Adjacency Information


Book Description

While the spectral information contained in hyperspectral images is rich, the spatial resolution of such images is in many cases very low. Many pixel spectra are mixtures of pure materials' spectra and therefore need to be decomposed into their constituents. This work investigates new decomposition methods taking into account spectral, spatial and global 3D adjacency information. This allows for faster and more accurate decomposition results.




Hyperspectral Image Unmixing Incorporating Adjacency Information


Book Description

While the spectral information contained in hyperspectral images is rich, the spatial resolution of such images is in many cases very low. Many pixel spectra are mixtures of pure materials' spectra and therefore need to be decomposed into their constituents. This work investigates new decomposition methods taking into account spectral, spatial and global 3D adjacency information. This allows for faster and more accurate decomposition results. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.




Computational, label, and data efficiency in deep learning for sparse 3D data


Book Description

Deep learning is widely applied to sparse 3D data to perform challenging tasks, e.g., 3D object detection and semantic segmentation. However, the high performance of deep learning comes with high costs, including computational costs and the effort to capture and label data. This work investigates and improves the efficiency of deep learning for sparse 3D data to overcome the obstacles to the further development of this technology.




Light Field Imaging for Deflectometry


Book Description

Optical measurement methods are becoming increasingly important for high-precision production of components and quality assurance. The increasing demand can be met by modern imaging systems with advanced optics, such as light field cameras. This work explores their use in the deflectometric measurement of specular surfaces. It presents improvements in phase unwrapping and calibration techniques, enabling high surface reconstruction accuracies using only a single monocular light field camera.




Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields


Book Description

In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. Für die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer Datensätze werden die vorgeschlagenen Rekonstruktionsansätze im Detail evaluiert. -In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail.




Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images


Book Description

In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast the problem of multi-view people detection in overlapping depth images as an inverse problem and present a generative probabilistic framework to jointly exploit the temporal multi-view image evidence.




Model-based Filtering of Interfering Signals in Ultrasonic Time Delay Estimations


Book Description

This work presents model-based algorithmic approaches for interference-invariant time delay estimation, which are specifically suited for the estimation of small time delay differences with a necessary resolution well below the sampling time. Therefore, the methods can be applied particularly well for transit-time ultrasonic flow measurements, since the problem of interfering signals is especially prominent in this application.




Machine Learning for Camera-Based Monitoring of Laser Welding Processes


Book Description

The increasing use of automated laser welding processes causes high demands on process monitoring. This work demonstrates methods that use a camera mounted on the focussing optics to perform pre-, in-, and post-process monitoring of welding processes. The implementation uses machine learning methods. All algorithms consider the integration into industrial processes. These challenges include a small database, limited industrial manufacturing inference hardware, and user acceptance.




Advances in Hyperspectral Image Processing Techniques


Book Description

Advances in Hyperspectral Image Processing Techniques Authoritative and comprehensive resource covering recent hyperspectral imaging techniques from theory to applications Advances in Hyperspectral Image Processing Techniques is derived from recent developments of hyperspectral imaging (HSI) techniques along with new applications in the field, covering many new ideas that have been explored and have led to various new directions in the past few years. The work gathers an array of disparate research into one resource and explores its numerous applications across a wide variety of disciplinary areas. In particular, it includes an introductory chapter on fundamentals of HSI and a chapter on extensive use of HSI techniques in satellite on-orbit and on-board processing to aid readers involved in these specific fields. The book’s content is based on the expertise of invited scholars and is categorized into six parts. Part I provides general theory. Part II presents various Band Selection techniques for Hyperspectral Images. Part III reviews recent developments on Compressive Sensing for Hyperspectral Imaging. Part IV includes Fusion of Hyperspectral Images. Part V covers Hyperspectral Data Unmixing. Part VI offers different views on Hyperspectral Image Classification. Specific sample topics covered in Advances in Hyperspectral Image Processing Techniques include: Two fundamental principles of hyperspectral imaging Constrained band selection for hyperspectral imaging and class information-based band selection for hyperspectral image classification Restricted entropy and spectrum properties for hyperspectral imaging and endmember finding in compressively sensed band domain Hyperspectral and LIDAR data fusion, fusion of band selection methods for hyperspectral imaging, and fusion using multi-dimensional information Advances in spectral unmixing of hyperspectral data and fully constrained least squares linear spectral mixture analysis Sparse representation-based hyperspectral image classification; collaborative hyperspectral image classification; class-feature weighted hyperspectral image classification; target detection approach to hyperspectral image classification With many applications beyond traditional remote sensing, ranging from defense and intelligence, to agriculture, to forestry, to environmental monitoring, to food safety and inspection, to medical imaging, Advances in Hyperspectral Image Processing Techniques is an essential resource on the topic for industry professionals, researchers, academics, and graduate students working in the field.




Hyperspectral Image Analysis


Book Description

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.