IC Interconnect Analysis


Book Description

As integrated circuit (IC) feature sizes scaled below a quarter of a micron, thereby defining the deep submicron (DSM) era, there began a gradual shift in the impact on performance due to the metal interconnections among the active circuit components. Once viewed as merely parasitics in terms of their relevance to the overall circuit behavior, the interconnect can now have a dominant impact on the IC area and performance. Beginning in the late 1980's there was significant research toward better modeling and characterization of the resistance, capacitance and ultimately the inductance of on-chip interconnect. IC Interconnect Analysis covers the state-of-the-art methods for modeling and analyzing IC interconnect based on the past fifteen years of research. This is done at a level suitable for most practitioners who work in the semiconductor and electronic design automation fields, but also includes significant depth for the research professionals who will ultimately extend this work into other areas and applications. IC Interconnect Analysis begins with an in-depth coverage of delay metrics, including the ubiquitous Elmore delay and its many variations. This is followed by an outline of moment matching methods, calculating moments efficiently, and Krylov subspace methods for model order reduction. The final two chapters describe how to interface these reduced-order models to circuit simulators and gate-level timing analyzers respectively. IC Interconnect Analysis is written for CAD tool developers, IC designers and graduate students.




IC Interconnect Analysis


Book Description

Describes a variety of interconnect analysis techniques with different efficiency-accuracy tradeoffs. The authors survey very simple delay metrics that can be useful during the synthesis stage of IC design, higher order delay and signal integrity metrics suitable for physical design, and more accurate analysis methods appropriate for the final verification stages of chip design. The Elmore delay, asmptotic waveform evaluation, moment generation, passive reduced-order multiport models are covered. The final two chapters describe how to interface macromodels with circuit simulators and RC models with gate-delay models Annotation copyrighted by Book News, Inc., Portland, OR




Three-Dimensional Integrated Circuit Design


Book Description

Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: - Manufacturing techniques for 3-D ICs with TSVs - Electrical modeling and closed-form expressions of through silicon vias - Substrate noise coupling in heterogeneous 3-D ICs - Design of 3-D ICs with inductive links - Synchronization in 3-D ICs - Variation effects on 3-D ICs - Correlation of WID variations for intra-tier buffers and wires - Offers practical guidance on designing 3-D heterogeneous systems - Provides power delivery of 3-D ICs - Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more - Provides experimental case studies in power delivery, synchronization, and thermal characterization




Interconnect Technology and Design for Gigascale Integration


Book Description

This book is jointly authored by leading academic and industry researchers. The material is unique in that it spans IC interconnect topics ranging from IBM's revolutionary copper process to an in-depth exploration into interconnect-aware computer architectures.




Reliability of RoHS-Compliant 2D and 3D IC Interconnects


Book Description

Proven 2D and 3D IC lead-free interconnect reliability techniques Reliability of RoHS-Compliant 2D and 3D IC Interconnects offers tested solutions to reliability problems in lead-free interconnects for PCB assembly, conventional IC packaging, 3D IC packaging, and 3D IC integration. This authoritative guide presents the latest cutting-edge reliability methods and data for electronic manufacturing services (EMS) on second-level interconnects, packaging assembly on first-level interconnects, and 3D IC integration on microbumps and through-silicon-via (TSV) interposers. Design reliable 2D and 3D IC interconnects in RoHS-compliant projects using the detailed information in this practical resource. Covers reliability of: 2D and 3D IC lead-free interconnects CCGA, PBGA, WLP, PQFP, flip-chip, lead-free SAC solder joints Lead-free (SACX) solder joints Low-temperature lead-free (SnBiAg) solder joints Solder joints with voids, high strain rate, and high ramp rate VCSEL and LED lead-free interconnects 3D LED and 3D MEMS with TSVs Chip-to-wafer (C2W) bonding and lead-free interconnects Wafer-to-wafer (W2W) bonding and lead-free interconnects 3D IC chip stacking with low-temperature bonding TSV interposers and lead-free interconnects Electromigration of lead-free microbumps for 3D IC integration




Fundamentals of Electromigration-Aware Integrated Circuit Design


Book Description

The book provides a comprehensive overview of electromigration and its effects on the reliability of electronic circuits. It introduces the physical process of electromigration, which gives the reader the requisite understanding and knowledge for adopting appropriate counter measures. A comprehensive set of options is presented for modifying the present IC design methodology to prevent electromigration. Finally, the authors show how specific effects can be exploited in present and future technologies to reduce electromigration’s negative impact on circuit reliability.




Signal Integrity Effects in Custom IC and ASIC Designs


Book Description

"...offers a tutorial guide to IC designers who want to move to the next level of chip design by unlocking the secrets of signal integrity." —Jake Buurma, Senior Vice President, Worldwide Research & Development, Cadence Design Systems, Inc. Covers signal integrity effects in high performance Radio Frequency (RF) IC Brings together research papers from the past few years that address the broad range of issues faced by IC designers and CAD managers now and in the future A Wiley-IEEE Press publication




Analytical Methodology of Tree Microstrip Interconnects Modelling For Signal Distribution


Book Description

This book focuses on the modelling methodology of microstrip interconnects, discussing various structures of single-input multiple-output (SIMO) tree interconnects for signal integrity (SI) engineering. Further, it describes lumped and distributed transmission line elements based on single-input single-output (SIMO) models of symmetric and asymmetric trees, and investigates more complicated phenomenon, such as interbranch coupling. The modelling approaches are based on the analytical methods using the Z-, Y- and T-matrices. The established method enables the S-parameters and voltage transfer function of SIMO tree to be determined. Providing illustrative results with frequency and time domain analyses for each tree interconnect structure, the book is a valuable resource for researchers, engineers, and graduate students in fields of analogue, RF/microwave, digital and mixed circuit design, SI and manufacturing engineering.




CMOS Digital Integrated Circuits


Book Description

The fourth edition of CMOS Digital Integrated Circuits: Analysis and Design continues the well-established tradition of the earlier editions by offering the most comprehensive coverage of digital CMOS circuit design, as well as addressing state-of-the-art technology issues highlighted by the widespread use of nanometer-scale CMOS technologies. In this latest edition, virtually all chapters have been re-written, the transistor model equations and device parameters have been revised to reflect the sigificant changes that must be taken into account for new technology generations, and the material has been reinforced with up-to-date examples. The broad-ranging coverage of this textbook starts with the fundamentals of CMOS process technology, and continues with MOS transistor models, basic CMOS gates, interconnect effects, dynamic circuits, memory circuits, arithmetic building blocks, clock and I/O circuits, low power design techniques, design for manufacturability and design for testability.




Design for Manufacturability and Statistical Design


Book Description

Design for Manufacturability and Statistical Design: A Comprehensive Approach presents a comprehensive overview of methods that need to be mastered in understanding state-of-the-art design for manufacturability and statistical design methodologies. Broadly, design for manufacturability is a set of techniques that attempt to fix the systematic sources of variability, such as those due to photolithography and CMP. Statistical design, on the other hand, deals with the random sources of variability. Both paradigms operate within a common framework, and their joint comprehensive treatment is one of the objectives of this book and an important differentation.