ICDSMLA 2019


Book Description

This book gathers selected high-impact articles from the 1st International Conference on Data Science, Machine Learning & Applications 2019. It highlights the latest developments in the areas of Artificial Intelligence, Machine Learning, Soft Computing, Human–Computer Interaction and various data science & machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.




ICDSMLA 2020


Book Description

This book gathers selected high-impact articles from the 2nd International Conference on Data Science, Machine Learning & Applications 2020. It highlights the latest developments in the areas of artificial intelligence, machine learning, soft computing, human–computer interaction and various data science and machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.




ICDSMLA 2021


Book Description

This book gathers selected high-impact articles from the 3rd International Conference on Data Science, Machine Learning & Applications 2021. It highlights the latest developments in the areas of artificial intelligence, machine learning, soft computing, human–computer interaction and various data science and machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.




Proceedings of the 4th International Conference on Data Science, Machine Learning and Applications


Book Description

This book includes peer reviewed articles from the 4th International Conference on Data Science, Machine Learning and Applications, 2022, held at the Hyderabad Institute of Technology & Management on 26-27th December, India. ICDSMLA is one of the most prestigious conferences conceptualized in the field of Data Science & Machine Learning offering in-depth information on the latest developments in Artificial Intelligence, Machine Learning, Soft Computing, Human Computer Interaction, and various data science & machine learning applications. It provides a platform for academicians, scientists, researchers and professionals around the world to showcase broad range of perspectives, practices, and technical expertise in these fields. It offers participants the opportunity to stay informed about the latest developments in data science and machine learning.




Proceedings of the 2nd International Conference on Cognitive and Intelligent Computing


Book Description

This book includes original, peer-reviewed articles from the 2nd International Conference on Cognitive & Intelligent Computing (ICCIC-2022), held at Vasavi College of Engineering Hyderabad, India. It covers the latest trends and developments in areas of cognitive computing, intelligent computing, machine learning, smart cities, IoT, artificial intelligence, cyber-physical systems, cybernetics, data science, neural network, and cognition. This book addresses the comprehensive nature of computational intelligence, cognitive computing, AI, ML, and DL to emphasize its character in modeling, identification, optimization, prediction, forecasting, and control of future intelligent systems. Submissions are original, unpublished, and present in-depth fundamental research contributions either from a methodological/application perspective in understanding artificial intelligence and machine learning approaches and their capabilities in solving diverse range of problems in industries and its real-world applications.




Radical Solutions for Digital Transformation in Latin American Universities


Book Description

This book presents how Digital Transformation is a requirement to upgrade Latin American universities to a next level in management, lecturing and learning processes and strategies. The book starts with a thorough introduction of the Latin American context addressing the three main topics in the book: Digital Transformation, Higher Education and Artificial Intelligence & Industry 4.0. They will be depicted by region, with a clear distribution between Central America & Mexico, Comunidad Andina (Perú, Colombia, Chile, Ecuador, Bolivia), Mercosur (Argentina, Brasil, Paraguay and Uruguay), and other countries. The book also shows how online learning is a key part of the transformation, with a clear focus on learning management systems, innovation and learning analytics. Further, personalised services for every single profile at the university (students, lecturers, academic managers) are presented to guarantee inclusive education service aggregation for networked campuses. Following, the book addresses strategy and overall services that concentrate on sustainability and revenue models integrated with a strategic planning. Finally a set of chapters will show specific experiences and case studies of direct application of Artificial Intelligence and Technology 4.0, where the readers can learn from and transfer directly into their educational contexts.




Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough


Book Description

This book provides a systematic and comprehensive overview of cognitive intelligence and AI-enabled IoT ecosystem and machine learning, capable of recognizing the object pattern in complex and large data sets. A remarkable success has been experienced in the last decade by emulating the brain–computer interface. It presents the applied cognitive science methods and AI-enabled technologies that have played a vital role at the core of practical solutions for a wide scope of tasks between handheld apps and industrial process control, autonomous vehicles, IoT, intelligent learning environment, game theory, human computer interaction, environmental policies, life sciences, playing computer games, computational theory, and engineering development. The book contains contents highlighting artificial neural networks that are analogous to the networks of neurons that comprise the brain and have given computers the ability to distinguish an image of a cat from one of a coconut, to spot pedestrians with enough accuracy to direct a self-driving car, and to recognize and respond to the spoken word. The chapters in this book focus on audiences interested in artificial intelligence, machine learning, fuzzy, cognitive and neurofuzzy-inspired computational systems, their theories, mechanisms, and architecture, which underline human and animal behavior, and their application to conscious and intelligent systems. In the current version, it focuses on the successful implementation and step-by-step execution and explanation of practical applications of the domain. It also offers a wide range of inspiring and interesting cutting-edge contributions on applications of machine learning, artificial intelligence, and cognitive science such as healthcare products, AI-enabled IoT, gaming, medical, and engineering. Overall, this book provides valuable information on effective, cutting-edge techniques, and approaches for students, researchers, practitioners, and academics in the field of machine learning and cognitive science. Furthermore, the purpose of this book is to address the interests of a broad spectrum of practitioners, students, and researchers, who are interested in applying machine learning and cognitive science methods in their respective domains.







Wireless Communication with Artificial Intelligence


Book Description

This reference text discusses advances in wireless communication, design challenges, and future research directions to design reliable wireless communication. The text discusses emerging technologies including wireless sensor networks, Internet of Things (IoT), cloud computing, mm-Wave, Massive MIMO, cognitive radios (CR), visible light communication (VLC), wireless optical communication, signal processing, and channel modeling. The text covers artificial intelligence-based applications in wireless communication, machine learning techniques and challenges in wireless sensor networks, and deep learning for channel and bandwidth estimation during optical wireless communication. The text will be useful for senior undergraduate, graduate students, and professionals in the fields of electrical engineering, and electronics and communication engineering.