Ice Fog, Ice Clouds, and Remote Sensing


Book Description

This topical issue of the Journal of Pure and Applied Geophysics (PAAG) on ice fog, ice clouds, and remote sensing focuses on cold fog and ice cloud microphysics and dynamics in earth’s boundary layer. The measurements from state of art in-situ instruments, remote sensing platforms, and simulation results from numerical weather prediction (NWP) models are used in this book. Use of remote sensing platforms, including satellites, radiometers, ceilometers, sodars, and lidars, as well as in-situ sensors for the monitoring, and short term forecasting of cold fog and ice clouds are required to improve present knowledge. The new scientific challenges in addition to present knowledge on cold fog and ice clouds are also considered. University students, postgraduates, and researchers interested in cold fog and ice clouds, related to forecasting and nowcasting, aviation meteorology, remote sensing, climate, hydrometeorology, and agriculture meteorology can benefit extensively from this topical issue.




Light Scattering by Ice Crystals


Book Description

This volume outlines the fundamentals and applications of light scattering, absorption and polarization processes involving ice crystals.




Physics and Chemistry of the Arctic Atmosphere


Book Description

This book presents current knowledge on chemistry and physics of Arctic atmosphere. Special attention is given to studies of the Arctic haze phenomenon, Arctic tropospheric clouds, Arctic fog, polar stratospheric and mesospheric clouds, atmospheric dynamics, thermodynamics and radiative transfer as related to the polar environment. The atmosphere-cryosphere feedbacks and atmospheric remote sensing techniques are presented in detail. The problems of climate change in the Arctic are also addressed.




Clouds Their Formation, Optical Properties, And Effects


Book Description

Clouds: Their Formation, Optical Properties, and Effects deals with the formation of clouds as well as the theoretical and experimental aspects of their microphysical and optical properties. Discussions are grouped under the headings of structure of clouds, interaction of passive radiation with clouds, and interaction of active radiation with clouds. This book is organized into three sections and has 11 chapters. After analyzing the spatial and temporal scales involved in the formation and organization of clouds and precipitation, this text examines the microphysical measurement techniques used in probing the microstructure of clouds. The reader is then methodically introduced to the microstructure of atmospheric clouds and precipitation; the formation and structure of fog; and basic shortwave characteristics of "ideal clouds. The temporal behavior of clouds and their interaction with the radiation field are considered, along with the possible effects of cloud models in general circulation studies. The remaining chapters explore the light scattering properties of ice crystals and the radiative characteristics of ice clouds; the laser measurements in clouds; the transmission and reflectivity of ice clouds by active probing; and the theory of multiple scattering of laser beams in clouds. The book concludes by presenting the measurements of the temporal and spatial spreading of a blue-green pulse through clouds and fogs as a function of optical thickness and receiver field-of-view. This text will be helpful to advanced researchers and program managers in terms of reviewing the state of the art and identifying those areas requiring further research efforts.




Polar Remote Sensing


Book Description

The polar regions, perhaps more than any other places on Earth, give the geophysical scientist a sense of exploration. This sensibility is genuine, for not only is high-latitude ?eldwork arduous with many locations seldom or never visited, but there remains much fundamental knowledge yet to be discovered about how the polar regions interact with the global climate system. The range of opportunities for new discovery becomes strikingly clear when we realize that the high latitudes are not one region but are really two vastly di?erent worlds. The high Arctic is a frozen ocean surrounded by land, and is home to fragile ecosystems and unique modes of human habitation. The Antarctic is a frozen continent without regular human habitation, covered by ice sheets taller than many mountain ranges and surrounded by the Earth’s most forbidding ocean. When we consider global change as applied to the Arctic, we discuss impacts to a region whose surface and lower atmospheric temperatures are near the triple point of water throughout much of the year. The most consistent signatures of climate warming have occurred at northern high latitudes (IPCC, 2001), and the potential impacts of a few degrees increase in surface temperature include a reduction in sea ice extent, a positive feedback to climate warming due to lowering of surface albedo, and changes to surface runo? that might a?ect the Arctic Ocean’s salinity and circulation.




Comprehensive Remote Sensing


Book Description

Comprehensive Remote Sensing, Nine Volume Set covers all aspects of the topic, with each volume edited by well-known scientists and contributed to by frontier researchers. It is a comprehensive resource that will benefit both students and researchers who want to further their understanding in this discipline. The field of remote sensing has quadrupled in size in the past two decades, and increasingly draws in individuals working in a diverse set of disciplines ranging from geographers, oceanographers, and meteorologists, to physicists and computer scientists. Researchers from a variety of backgrounds are now accessing remote sensing data, creating an urgent need for a one-stop reference work that can comprehensively document the development of remote sensing, from the basic principles, modeling and practical algorithms, to various applications. Fully comprehensive coverage of this rapidly growing discipline, giving readers a detailed overview of all aspects of Remote Sensing principles and applications Contains ‘Layered content’, with each article beginning with the basics and then moving on to more complex concepts Ideal for advanced undergraduates and academic researchers Includes case studies that illustrate the practical application of remote sensing principles, further enhancing understanding




Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting


Book Description

This volume presents the history of marine fog research and applications, and discusses the physical processes leading to fog's formation, evolution, and dissipation. A special emphasis is on the challenges and advancements of fog observation and modeling as well as on efforts toward operational fog forecasting and linkages and feedbacks between marine fog and the environment.




An Introduction to Ocean Remote Sensing


Book Description

Fully updated, with significant new coverage of advances in satellite oceanography and results from new satellite missions, the second edition of this popular textbook introduces students to how remote sensing works, how to understand observations from Earth-observing systems, and the observations' importance to physical and biological oceanography. It provides full explanations of radiative transfer, ocean surface properties, satellite orbits, instruments and methods, visible remote sensing of biogeochemical properties, infrared and microwave retrieval of sea surface temperature, sea surface salinity retrieval, passive microwave measurements, scatterometer wind retrieval, altimetry and SAR. Also included are descriptions of the online archives where data can be obtained, and readers can obtain online tools for working with the data - enabling hands-on engagement with real-world observations. This is an ideal textbook for graduate and advanced undergraduate students in oceanography, remote sensing and environmental science, and a practical resource for researchers and professionals working with oceanographic satellite data.







Lectures in Meteorology


Book Description

Lectures in Meteorology is a comprehensive reference book for meteorologists and environmental scientists to look up material on the thermodynamics, dynamics and chemistry of the troposphere. The lectures demonstrate how to derive/develop equations – an essential tool for model development. All chapters present applications of the material including numerical models. The lectures are written in modular form, i.e. they can be used at the undergraduate level for classes covered by the chapters or at the graduate level as a comprehensive, intensive course. The student/instructor can address chapters 2 (thermodynamics) and 4 (radiation) in any order. They can also switch the order of chapter 5 (chemistry) and 6 (dynamics). Chapter 7 (climatology and climate) requires an understanding of all chapters. Chapter 3 (cloud physics) needs basics from chapter 2 to understand the cloud microphysical processes. The governing conservation equations for trace constituents, dry air, water substances, total mass, energy, entropy and momentum are presented, including simplifications and their application in models. A brief introduction to atmospheric boundary layer processes is presented as well. Basic principles of climatology discussed include analysis methods, atmospheric waves and their analytical solutions, tropical and extra-tropical cyclones, classical and non-classical mesoscale circulations, and the global circulation. The atmospheric chemistry section encompasses photolytic and gas-phase processes, aqueous chemistry, aerosol processes, fundamentals of biogeochemical cycles and the ozone layer. Solar and terrestrial radiation; major absorber; radiation balance; radiative equilibrium; radiative-convective equilibrium; and basics of molecular, aerosol and cloud adsorption and scattering and their use in remote sensing are also presented.