Ice Shear


Book Description

A small town cop’s murder investigation turns deadly when she uncovers a web of politics and drugs linked to an outlaw motorcycle gang in this gripping debut suspense novel for fans of Winter’s Bone, Frozen River, Breaking Bad, and Sons of Anarchy. As a cop on the night shift in Hopewell Falls, New York, June Lyons drives drunks home and picks up the donuts. A former FBI agent, she ditched the Bureau when her husband died, and now she and her young daughter are back in upstate New York, living with her father, the town’s retired chief of police. When June discovers a young woman’s body impaled on an ice shear in the frozen Mohawk River, news of the murder spreads fast; the dead girl was the daughter of a powerful local Congresswoman, and her troubled youth kept the gossips busy. Though June was born and raised in Hopewell Falls, the local police see her as an interloper—resentment that explodes in anger when the FBI arrive and deputize her to work on the murder investigation. But June may not find allies among the Feds. The agent heading the case is someone from her past—someone she isn’t sure she can trust. As June digs deeper, an already fraught case turns red-hot when it leads to a notorious biker gang and a meth lab hidden in plain sight—and an unmistakable sign that the river murder won’t be the last.




Ice Adhesion


Book Description

The book containing 18 chapters is divided into three parts: Part 1: Fundamentals of Ice Formation and Ice Characteristics; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered Include: Factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; anti-icing using microstructured surfaces; durability assessment of icephobic coatings; bio-inspired icephobic coatings; challenges in rational fabrication of icephobic surfaces; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.




ERTS-I


Book Description

Cooperating organizations : U.S. Department of the Interior with other Federal and State agencies, and universities.




Ice Adhesion


Book Description

This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.




CRREL Report


Book Description




ERTS-1


Book Description

Cooperating organizations : U.S. Department of the Interior with other Federal and State agencies, and universities.




Fundamentals of Geomorphology


Book Description

This extensively revised and updated edition continues to present an engaging and comprehensive introduction to the subject, exploring the world’s landforms from a broad systems perspective. It reflects on the latest developments in the field and includes new chapters on geomorphic materials and processes, hillslopes and changing landscapes. Fundamentals of Geomorphology is an engaging and comprehensive introduction. Starting with a consideration of the nature of geomorphology and the geomorphic system, geomorphic materials and processes, and the quest of process and historical geomorphologists, it moves on to discuss: structure: landforms resulting from, or influenced by, the endogenic agencies of tectonic and volcanic processes, geological structures and rock types process and form: landforms resulting from, or influenced by, the exogenic agencies of weathering, running water, flowing ice and meltwater, ground ice and frost, the wind and the sea history: earth surface history, giving a discussion of Quaternary landforms and ancient landforms, including the origin of old plains, relict, exhumed, and stagnant landscape features and evolutionary aspects of landscape change. Fundamentals of Geomorphology provides a stimulating and innovative perspective on the key topics and debates within the field of geomorphology. Written in an accessible and lively manner, it includes guides to further reading, chapter summaries and an extensive glossary of key terms. The book is also illustrated throughout with over 200 informative diagrams and attractive photographs, including a colour plate section.




Fundamentals of Geomorphology


Book Description

This extensively revised and updated edition continues to present an engaging and comprehensive introduction to the subject, exploring the world s landforms from a broad systems perspective. It reflects on the latest developments in the field and includes new chapters on geomorphic materials and processes, hillslopes and changing landscapes. Fundamentals of Geomorphology is an engaging and comprehensive introduction. Starting with a consideration of the nature of geomorphology and the geomorphic system, geomorphic materials and processes, and the quest of process and historical geomorphologists, it moves on to discuss: structure: landforms resulting from, or influenced by, the endogenic agencies of tectonic and volcanic processes, geological structures and rock types process and form: landforms resulting from, or influenced by, the exogenic agencies of weathering, running water, flowing ice and meltwater, ground ice and frost, the wind and the sea history: earth surface history, giving a discussion of Quaternary landforms and ancient landforms, including the origin of old plains, relict, exhumed, and stagnant landscape features and evolutionary aspects of landscape change. Fundamentals of Geomorphology provides a stimulating and innovative perspective on the key topics and debates within the field of geomorphology. Written in an accessible and lively manner, it includes guides to further reading, chapter summaries and an extensive glossary of key terms. The book is also illustrated throughout with over 200 informative diagrams and attractive photographs, including a colour plate section."




Techniques for Protecting Overhead Lines in Winter Conditions


Book Description

This book offers a comprehensive review of the various options for improving the performance of overhead power lines in winter conditions, taking into account both mechanical and electrical aspects. Experience within the CIGRE community reveals many strategies to protect overhead power lines from damage caused by heavy build-up of ice and snow or electrical issues such as insulator icing flashovers. The initial approach is to consider the predicted ice loads from the available databases. This is supplemented with some fundamental aspects of icing physics that affect accretion rate as well as factors in ice shedding on traditional (metal, ceramic) and novel treated surfaces. These ice physics concepts structure the ways to categorize and evaluate methods to reduce or prevent icing on conductors and ground wires or to prevent flashover of insulators. Many utilities in cold climate regions have developed and used methods and strategies to reduce ice loads using anti-icing (AI) and / or de-icing (DI) methods. In general, AI methods are used before or early during ice build-up, while DI methods are activated during and sometimes after ice build-up. The book describes and discusses some historical, operational, or potential AI / DI systems in the ice physics context. This supports a comprehensive review of AI coatings including concepts, relevant material properties, application methods, and finally test methods for characterizing the long-term performance.