C. Elegans II


Book Description

Defines the current status of research in the genetics, anatomy, and development of the nematode C. elegans, providing a detailed molecular explanation of how development is regulated and how the nervous system specifies varied aspects of behavior. Contains sections on the genome, development, neural networks and behavior, and life history and evolution. Appendices offer genetic nomenclature, a list of laboratory strain and allele designations, skeleton genetic maps, a list of characterized genes, a table of neurotransmitter assignments for specific neurons, and information on codon usage. Includes bandw photos. For researchers in worm studies, as well as the wider community of researchers in cell and molecular biology. Annotation copyrighted by Book News, Inc., Portland, OR




Intrinsic Immunity


Book Description

Recent research has focused attention on the importance of intrinsic antiviral immunity, i.e. immunity mediated by factors that are constitutively expressed in many cells. In this volume, leading experts provide a comprehensive overview of this relatively new and rapidly evolving field. They cover intrinsic proteinaceous antiviral immune effectors, such as the APOBEC3 and TRIM protein families as well as Tetherin and SAMHD1, which were initially discovered by researchers studying HIV-1. Furthermore, the role of RNA interference in antiviral defense in plants and invertebrates, as well as the interplay between microRNAs and viruses in mammalian cells, are analysed. One chapter discusses how intrinsic immunity and viral countermeasures to intrinsic immune effectors drive both pathogen and host evolution, and finally the emerging evidence that DNA damage response proteins restrict infection by DNA viruses is highlighted.




Scientific Frontiers in Developmental Toxicology and Risk Assessment


Book Description

Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.




Genetics Abstracts


Book Description




Handbook of Biochemistry


Book Description

V.1- Protens; v.2.B. Nucleic acids; v.2c- Lipi ds, carbohydrates, stervides.




Index Medicus


Book Description

Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.




Mycorrhiza Manual


Book Description

Mycorrhiza - symbiotic associations between plant roots and fungi - play a major role in many fundamental plant functions such as mineral nutrition or stress resistance. As the link between plants and the soil, mycorrhiza are now of great interest for developing new strategies in sustainable agriculture. Since they allow a decreased use of fertilizer and pesticides, negative impacts on the environment can be minimized. With contributions from renowned international scientists, this manual offers a great variety of practical protocols for analyzing mycorrhiza, including the latest molecular, biochemical, genetical, and physiological techniques.




Biological Control of Plant-Parasitic Nematodes:


Book Description

The offered volume intends to review the biological control theme of phytonematodes from several prospects: ecological; applicative as well as commercial state of the art; understanding the mode-of-action of various biocontrol systems; interaction between the plant host, nematodes’ surface and microorganism’s; candidates for biocontrol; extrapolation of the wide knowledge existed in another systems for understanding biocontrol processes: C. elegans as a model and lessons from other natural systems; and exploiting advanced genomic tools to promote understanding biocontrol processes and thereafter improve specific biological control agents.




The Chickpea Genome


Book Description

This book sheds new light on the chickpea genome sequencing and resequencing of chickpea germplasm lines and provides insights into classical genetics, cytogenetics, and trait mapping. It also offers an overview of the latest advances in genome sequencing and analysis. The growing human population, rapid climate changes and limited amounts of arable land are creating substantial challenges in connection with the availability and affordability of nutritious food for smallholder farmers in developing countries. In this context, climate smart crops are essential to alleviating the hunger of the millions of poor and undernourished people living in developing countries. In addition to cereals, grain legumes are an integral part of the human diet and provide sustainable income for smallholder farmers in the arid and semi-arid regions of the world. Among grain legumes, the chickpea (Cicer arietinum) is the second most important in terms of production and productivity. Besides being a rich source of proteins, it can fix atmospheric nitrogen through symbiosis with rhizobia and increase the input of combined nitrogen. Several abiotic stresses like drought, heat, salinity, together with biotic stresses like Fusarium wilt, Ascochyta blight, and Botrytis grey mould have led to production losses, as the chickpeas is typically grown in the harsh climates of our planet’s semi-arid regions.